The potential of artificial intelligence in improving student learning and well-being: innovative pedagogical practices from an educational neuroscience
DOI:
https://doi.org/10.18050/psiquemag.v13i2.3138Keywords:
Educational neuroscience, artificial intelligence, pedagogical practices, learningAbstract
This article seeks to provide a comprehensive overview of the intersection between educational neuroscience, artificial intelligence, and innovative pedagogical practices. The present literature review is based on a qualitative approach, which seeks to analyze and understand the nature and complexity of the integration of educational neuroscience, artificial intelligence, and innovative pedagogical practices in the educational context. The integration of artificial intelligence in the educational field opens up a range of possibilities to improve both student learning and well-being. This technological advancement promises unprecedented personalization in teaching, effectively adapting to the individual needs of each student. This integration has important implications for education, as it can lead to the creation of more effective and personalized learning systems, which can improve student learning and well-being. Although artificial intelligence can offer benefits in terms of efficiency and adaptability, it should not replace the emotional and social connection that educators establish with their students. It is essential that this integration is carried out in an ethical and careful manner, where the well-being and comprehensive development of students are prioritized in a balanced and enriching educational environment.
References
Abramowitz, B., & Antonenko, P. (2022). In-service teachers’ (mis)conceptions of artificial intelligence in K-12 science education. Journal of Research on Technology in Education, 55, 64 - 78. https://doi.org/10.1080/15391523.2022.2119450
Acuña Mendoza, D. L., & Torres Brugés, W. J. (2024). ICT as a Dynamizing Axis in the Generation of Indicators for the Social Appropriation of Knowledge in the Research Groups of the University of La Guajira. Southern perspective / Perspectiva austral, 2, 58. https://doi.org/10.56294/pa202458
Ahmad, S., Rahmat, M., Mubarik, M., Alam, M., & Hyder, S. (2021). Artificial Intelligence and Its Role in Education. Sustainability, 13(22), 12902. https://doi.org/10.3390/su132212902
Amaya Amado, D. P., Cárdenas Diaz, F. A., Cabrera Pantoja, R. D. P., & Bastidas Sanchez, L. M. (2024). Benefits of Artificial Intelligence and its Innovation in Organizations. Multidisciplinar (Montevideo), 1, 15. https://doi.org/10.62486/agmu202315
Andersen, R., Mørch, A., & Litherland, K. (2022). Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education. Behaviour & Information Technology, 41, 1830 - 1847. https://doi.org/10.1080/0144929X.2022.2083981
Araujo Inastrilla, C. R. (2023). Data Visualization in the Information Society. Seminars in Medical Writing and Education, 2, 25. https://doi.org/10.56294/mw202325
Ayouni, S., Hajjej, F., Maddeh, M., & Al-Otaibi, S. (2021). A new ML-based approach to enhance student engagement in online environment. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0258788
Baena-Navarro, R., Serrano-Ardila, L., & Carriazo-Regino, Y. (2024). Innovative model for the integration of ICTs in rural environmental education: Towards a sustainable pedagogy. Southern perspective / Perspectiva austral, 2, 35. https://doi.org/10.56294/pa202435
Baker, R., & Hawn, A. (2021). Algorithmic Bias in Education. International Journal of Artificial Intelligence in Education, 32, 1052 - 1092. https://doi.org/10.1007/s40593-021-00285-9
Barrera León, D., Tello Flores, R. Y., Ramos Guzmán, F., & Pérez Gamboa, A. J. (2024). Acompañamiento a la promoción de proyectos de vida de jóvenes seropositivos. Un estudio cualitativo complejo. Región Científica, 3(1), 2024248. https://doi.org/10.58763/rc2024248
Boussouf, Z., Amrani, H., Zerhouni Khal, M., & Daidai, F. (2024). Artificial Intelligence in Education: A Systematic Literature Review. Data and Metadata, 3, 288. https://doi.org/10.56294/dm2024288
Bozkurt, A., Karadeniz, A., Bañeres, D., Guerrero-Roldán, A., & Rodríguez, M. (2021). Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century. Sustainability, 13(2), 800. https://doi.org/10.3390/SU13020800
Buiten, M. (2019). Towards Intelligent Regulation of Artificial Intelligence. European Journal of Risk Regulation, 10, 41 - 59. https://doi.org/10.1017/err.2019.8
Cabuquin, J. C., Acidre, M. A. S., Manabat, M. A. A., Aruta, M. G. H., Sangutan, J., & Beltran Yu, R. F. (2024). The role of ChatGPT on academic research: Perspectives from filipino students across diverse educational levels. Salud, Ciencia y Tecnología - Serie de Conferencias, 3. https://doi.org/10.56294/sctconf2024.1205
Cañón Solano, A. V., Cardona Arboleda, L. D., Coral García, C. C., & Carmona Dominguez, C. D. (2024). Benefits of artificial intelligence in companies. Management (Montevideo), 1, 17. https://doi.org/10.62486/agma202317
Cantón Balcázar, A. L. (2024). El estado de las habilidades ciudadanas en estudiantes universitarios de Chile, Colombia y México. Región Científica, 3(1). https://doi.org/10.58763/rc2024244
Chavez, H., Chavez-Arias, B., Contreras-Rosas, S., Álvarez-Rodríguez, J., & Raymundo, C. (2023). Artificial neural network model to predict student performance using nonpersonal information. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1106679
Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
Chiu, T. (2021). A Holistic Approach to the Design of Artificial Intelligence (AI) Education for K-12 Schools. TechTrends, 65, 796 - 807. https://doi.org/10.1007/s11528-021-00637-1
Cope, B., Kalantzis, M., & Searsmith, D. (2020). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53, 1229 - 1245. https://doi.org/10.1080/00131857.2020.1728732
Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M., Chai, C., & Lin, Z. (2022). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, 112, 23 - 42. https://doi.org/10.1002/jee.20503
Del Campo Saltos, G., Villlota Oyarvide, W., Andrade Sánchez, E., & Montero Reyes, Y. (2023). Bibliometric analysis on neuroscience, artificial intelligence and robotics studies: Emphasis on disruptive technologies in education. Salud, Ciencia y Tecnología, 3, 362. https://doi.org/10.56294/saludcyt2023362
Dignum, V. (2021). The role and challenges of education for responsible AI. London Review of Education, 19(1). https://doi.org/10.14324/LRE.19.1.01
Dubinsky, J., Guzey, S., Schwartz, M., Roehrig, G., MacNabb, C., Schmied, A., Hinesley, V., Hoelscher, M., Michlin, M., Schmitt, L., Ellingson, C., Chang, Z., & Cooper, J. (2019). Contributions of Neuroscience Knowledge to Teachers and Their Practice. The Neuroscientist, 25, 394 - 407. https://doi.org/10.1177/1073858419835447
Estrada-Araoz, E. G., Manrique-Jaramillo, Y. V., Díaz-Pereira, V. H., Rucoba-Frisancho, J. M., Paredes-Valverde, Y., Quispe-Herrera, R., & Quispe-Paredes, D. R. (2024). Assessment of the level of knowledge on artificial intelligence in a sample of university professors: A descriptive study. Data and Metadata, 3, 285. https://doi.org/10.56294/dm2024285
Feng, S., & Law, N. (2021). Mapping Artificial Intelligence in Education Research: a Network‐based Keyword Analysis. International Journal of Artificial Intelligence in Education, 31, 277-303. https://doi.org/10.1007/S40593-021-00244-4
Furlong, D., & Lester, J. (2022). Toward a Practice of Qualitative Methodological Literature Reviewing. Qualitative Inquiry, 29, 669 - 677. https://doi.org/10.1177/10778004221131028
Gama Espinosa, J. C., Leiva Sánchez, L. M., & Fajardo Pereira, M. A. (2024). Benefits of Artificial Intelligence in human talent management. Multidisciplinar (Montevideo), 1, 14. https://doi.org/10.62486/agmu202314
García-Martínez, I., Fernández-Batanero, J., Fernández-Cerero, J., & León, S. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12, 171-197. https://doi.org/10.7821/naer.2023.1.1240
Gonzalez-Argote, J., Alonso-Galbán, P., Vitón-Castillo, A. A., Lepez, C. O., Castillo-Gonzalez, W., Bonardi, M. C., & Gómez Cano, C. A. (2023). Trends in scientific output on artificial intelligence and health in Latin America in Scopus. ICST Transactions on Scalable Information Systems. https://doi.org/10.4108/eetsis.vi.3231
Gonzalez-Argote, J., Lepez, C. O., Castillo-Gonzalez, W., Bonardi, M. C., Gómez Cano, C. A., & Vitón-Castillo, A. A. (2023). Use of real-time graphics in health education: A systematic review. EAI Endorsed Transactions on Pervasive Health and Technology, 9, e3. https://doi.org/10.4108/eetpht.v9i.3209
Hamal, O., Faddouli, N., Harouni, M., & Lu, J. (2022). Artificial Intelligent in Education. Sustainability, 14(5), 52862. https://doi.org/10.3390/su14052862
Holzer, J., Lüftenegger, M., Käser, U., Korlat, S., Pelikan, E., Schultze-Krumbholz, A., Spiel, C., Wachs, S., & Schober, B. (2021). Students' basic needs and well‐being during the COVID‐19 pandemic: A two‐country study of basic psychological need satisfaction, intrinsic learning motivation, positive emotion and the moderating role of self‐regulated learning. International Journal of Psychology, 56, 843 - 852. https://doi.org/10.1002/ijop.12763
Immordino‐Yang, M., Darling-Hammond, L., & Krone, C. (2019). Nurturing Nature: How Brain Development Is Inherently Social and Emotional, and What This Means for Education. Educational Psychologist, 54, 185 - 204. https://doi.org/10.1080/00461520.2019.1633924
Iterbeke, K., Witte, K., & Schelfhout, W. (2020). The effects of computer-assisted adaptive instruction and elaborated feedback on learning outcomes. A randomized control trial. Computers in Human Behavior., 120, 106666. https://doi.org/10.1016/j.chb.2020.106666
Jiménez-Pitre, I., Molina-Bolívar, G., & Gámez Pitre, R. (2023). Visión sistémica del contexto educativo tecnológico en Latinoamérica. Región Científica, 2(1), 202358. https://doi.org/10.58763/rc202358
Junco Luna, G. J. (2023). Study on the impact of artificial intelligence tools in the development of university classes at the school of communication of the Universidad Nacional José Faustino Sánchez Carrión. Metaverse Basic and Applied Research, 2, 51. https://doi.org/10.56294/mr202351
Kim, H., Chae, Y., Kim, S., & Im, C. (2023). Development of a Computer-Aided Education System Inspired by Face-to-Face Learning by Incorporating EEG-Based Neurofeedback Into Online Video Lectures. IEEE Transactions on Learning Technologies, 16, 78-91. https://doi.org/10.1109/TLT.2022.3200394
Klimova, B., Pikhart, M., & Kacetl, J. (2023). Ethical issues of the use of AI-driven mobile apps for education. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1118116
Klos, M., Escoredo, M., Joerin, A., Lemos, V., Rauws, M., & Bunge, E. (2021). Artificial Intelligence–Based Chatbot for Anxiety and Depression in University Students: Pilot Randomized Controlled Trial. JMIR Formative Research, 5. https://doi.org/10.2196/20678
Kumar, D., Haque, A., Mishra, K., Islam, F., Kumar Mishra, B., & Ahmad, S. (2023). Exploring the Transformative Role of Artificial Intelligence and Metaverse in Education: A Comprehensive Review. Metaverse Basic and Applied Research, 2, 55. https://doi.org/10.56294/mr202355
Li, C., Yang, M., Zhang, Y., & Lai, K. (2022). An Intelligent Mental Health Identification Method for College Students: A Mixed-Method Study. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph192214976
Liu, J., & Wang, H. (2022). Analysis of Educational Mental Health and Emotion Based on Deep Learning and Computational Intelligence Optimization. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.898609
López González, Y. Y. (2023). Aptitud digital del profesorado frente a las competencias TIC en el siglo XXI: una evaluación de su desarrollo. Región Científica, 2(2), 2023119. https://doi.org/10.58763/rc2023119
Luan, H., Géczy, P., Lai, H., Gobert, J., Yang, S., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C. (2020). Challenges and Future Directions of Big Data and Artificial Intelligence in Education. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820
MacCann, C., Jiang, Y., Brown, L., Double, K., Bucich, M., & Minbashian, A. (2019). Emotional intelligence predicts academic performance: A meta-analysis. Psychological bulletin, 146(2), 150-186. https://doi.org/10.1037/bul0000219
Machuca-Contreras, F., Lepez, C. O., & Canova-Barrios, C. (2024). Influence of virtual reality and augmented reality on mental health. Gamification and Augmented Reality, 2, 25. https://doi.org/10.56294/gr202425
Maghsudi, S., Lan, A., Xu, J., & Schaar, M. (2021). Personalized Education in the Artificial Intelligence Era: What to Expect Next. IEEE Signal Processing Magazine, 38, 37-50. https://doi.org/10.1109/MSP.2021.3055032
Miranda-Moreno, V. M., & Sandoval-Obando, E. (2024). La educación expandida en contextos educativos formales e informales. Región Científica, 3(2), 2024321. https://doi.org/10.58763/rc2024321
Murtaza, M., Ahmed, Y., Shamsi, J., Sherwani, F., & Usman, M. (2022). AI-Based Personalized E-Learning Systems: Issues, Challenges, and Solutions. IEEE Access, 10, 81323-81342. https://doi.org/10.1109/access.2022.3193938
Mykhaylenko, V., Safonova, N., Ilchenko, R., Ivashchuk, A., & Babik, I. (2024). Using artificial intelligence to personalise curricula and increase motivation to learn, taking into account psychological aspects. Data and Metadata, 3. https://doi.org/10.56294/dm2024.241
Nadji-Tehrani, M., & Eslami, A. (2020). A Brain-Inspired Framework for Evolutionary Artificial General Intelligence. IEEE Transactions on Neural Networks and Learning Systems, 31, 5257-5271. https://doi.org/10.1109/TNNLS.2020.2965567
Nazari, N., Shabbir, M., & Setiawan, R. (2021). Application of Artificial Intelligence powered digital writing assistant in higher education: randomized controlled trial. Heliyon, 7. https://doi.org/10.1016/j.heliyon.2021.e07014
Ninaus, M., & Sailer, M. (2022). Closing the loop – The human role in artificial intelligence for education. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.956798
Noroña González, Y., Colala Troya, A. L., & Peñate Hernández, J. I. (2023). La orientación para la proyección individual y social en la educación de jóvenes y adultos: Un estudio mixto sobre los proyectos de vida. Región Científica, 2(2), 202389. https://doi.org/10.58763/rc202389
Ogolodom, M. P., Daniel Ochong, A., Brownson Egop, E., Ugwem Jeremiah, C., Kenneth Madume, A., Nyenke, C. U., Dambele, M. Y., Joseph, D. Z., Bakre, A. F. K., Balogun, E. O., Alazigha, N., Okeji, M. C., Ordu, K. S., Hyacienth Uche Chiegwu, H. U. C., Johnson, J., Mbaba, A. N. M., & Kelechi Nwodo, V. (2023). Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud, 1, 16. https://doi.org/10.62486/agsalud202316
Oladokun, B. D., Dogara, K., & Yusuf, M. (2024). Students’ Attitudes and Experiences with ChatGPT as a Reference Service Tool in a Nigerian University: A Comprehensive Analysis of User Perceptions. Gamification and Augmented Reality, 2, 36. https://doi.org/10.56294/gr202436
Olusegun Oyetola, S., Oladokun, B. D., & Dogara, K. (2024). LIS Educators’ Perception Towards the Adoption of AI Tools in Nigerian Library Schools. Metaverse Basic and Applied Research, 3, 65. https://doi.org/10.56294/mr202465
Ouatik, F., Erritali, M., Ouatik, F., & Jourhmane, M. (2022). Predicting Student Success Using Big Data and Machine Learning Algorithms. International Journal of Emerging Technologies in Learning., 17, 236-251. https://doi.org/10.3991/ijet.v17i12.30259
Pagano, T., Loureiro, R., Lisboa, F., Peixoto, R., Guimarães, G., Cruz, G., Araujo, M., Santos, L., Cruz, M., Oliveira, E., Winkler, I., & Nascimento, E. (2023). Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data and Cognitive Computing, 7, 15. https://doi.org/10.3390/bdcc7010015
Pal, R., Adhikari, D., Heyat, M., Guragai, B., Lipari, V., Ballester, J., Díez, I., Abbas, Z., & Lai, D. (2022). A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering, 9. https://doi.org/10.3390/bioengineering9120793
Palomino Quispe, J. F., Choque-Flores, L., Castro León, A. L., Requis Carbajal, L. V., Ferrer-Peñaranda, L.-A., García-Huamantumba, E., Dávila-Morán, R. C., & Velarde Dávila, L. (2024). The Transformative Role of Technology in Medical Education. Salud, Ciencia y Tecnología, 4, 657. https://doi.org/10.56294/saludcyt2024657
Pérez Gamboa, A. J., García Acevedo, Y., García Batán, J., & Raga Aguilar, L. M. (2022). La configuración de proyectos de vida desarrolladores: Un programa para su atención psicopedagógica. Actualidades Investigativas en Educación, 23(1), 1–35. https://doi.org/10.15517/aie.v23i1.50678
Pérez Valdivia, Y. O., Rojas Sánchez, G. A., Sánchez Castillo, V., & Pérez Gamboa, A. J. (2024). La categoría bienestar psicológico y su importancia en la práctica asistencial: Una revisión semisistemática. Revista Información Científica, 103. https://doi.org/10.5281/ZENODO.10615337
Posso-Pacheco, R. J., Gutiérrez-Ramos, E. A., Chica-Montero, N. J., Alemán-Aguay, J. A., Rondal-Guanotasig, M. D. C., & Mullo-Cóndor, K. S. (2024). Evaluation of Artificial Intelligence Technologies and the Metaverse in Adapting Pedagogical Strategies. Metaverse Basic and Applied Research, 3, 68. https://doi.org/10.56294/mr202468
Reiss, M. (2021). The use of AI in education: Practicalities and ethical considerations. London Review of Education, 19(1). https://doi.org/10.14324/LRE.19.1.05
Richards, B., Lillicrap, T., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, R., Berker, A., Ganguli, S., Gillon, C., Hafner, D., Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G., Miller, K., Naud, R., Pack, C., Poirazi, P., Roelfsema, P., Sacramento, J., Saxe, A., Scellier, B., Schapiro, A., Senn, W., Wayne, G., Yamins, D., Zenke, F., Zylberberg, J., Thérien, D., & Kording, K. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22, 1761 - 1770. https://doi.org/10.1038/s41593-019-0520-2
Rozov, K. (2020). About the need to change the content of professional training of a future informatics teacher in artificial intelligence. Informatics in education, 12-26. https://doi.org/10.32517/0234-0453-2020-35-4-12-26
Ruiz Díaz De Salvioni, V. V. (2023). Estrategias innovadoras para un aprendizaje continuo y efectivo durante emergencias sanitarias en Ciudad del Este. Región Científica, 2(1), 202338. https://doi.org/10.58763/rc202338
Sahlgren, O. (2021). The politics and reciprocal (re)configuration of accountability and fairness in data-driven education. Learning, Media and Technology, 48, 95 - 108. https://doi.org/10.1080/17439884.2021.1986065
Salas-Pilco, S., Xiao, K., & Oshima, J. (2022). Artificial Intelligence and New Technologies in Inclusive Education for Minority Students: A Systematic Review. Sustainability, 14(20), 13572. https://doi.org/10.3390/su142013572
Sánchez Cabezas, P., Amaiquema Márquez, F. A., & Ruíz Porras, M. C. (2024). Orientación educativa y formación continua del profesor universitario. Reflexiones de una experiencia en Ecuador. Región Científica, 3(1), 2024240. https://doi.org/10.58763/rc2024240
Schwartz, M., Hinesley, V., Chang, Z., & Dubinsky, J. (2019). Neuroscience knowledge enriches pedagogical choices. Teaching and Teacher Education, 83, 87-98. https://doi.org/10.1016/J.TATE.2019.04.002
Siddaway, A., Wood, A., & Hedges, L. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual review of psychology, 70, 747-770. https://doi.org/10.1146/annurev-psych-010418-102803
Srivastava, S., Varshney, A., Katyal, S., Kaur, R., & Gaur, V. (2021). A smart learning assistance tool for inclusive education. Journal of Intelligent & Fuzzy Systems., 40, 11981-11994. https://doi.org/10.3233/JIFS-210075
Tapalova, O., Zhiyenbayeva, N., & Gura, D. (2022). Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. Electronic Journal of e-Learning, 20(5). https://doi.org/10.34190/ejel.20.5.2597
Tymoshenko, N., Gordiichuk, G., Davydova, Z., Sirenko, P., & Dorozhko, Y. (2024). Utilising artificial intelligence in education: Current trends, challenges, and future directions. Salud, Ciencia y Tecnología - Serie de Conferencias, 3. https://doi.org/10.56294/sctconf2024.1134
Valencia Celis, A. U., Rosas Patiño, G., & Sánchez Castillo, V. (2023). La gestión del conocimiento ambiental: Propuestas en sistemas de educación. Bibliotecas. Anales de Investigación, 19(2), 7. http://revistas.bnjm.sld.cu/index.php/BAI/article/view/654
Velásquez Castro, L. A., & Paredes-Águila, J. A. (2024). Revisión sistemática sobre los desafíos que enfrenta el desarrollo e integración de las tecnologías digitales en el contexto escolar chileno, desde la docencia. Región Científica, 3(1), 2024226. https://doi.org/10.58763/rc2024226
Wei, X., Sun, S., Wu, D., & Zhou, L. (2021). Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.767837
Wilson, S., & Anagnostopoulos, D. (2021). Methodological Guidance Paper: The Craft of Conducting a Qualitative Review. Review of Educational Research, 91, 651 - 670. https://doi.org/10.3102/00346543211012755
Xuan, D., Zhu, D., & Xu, W. (2021). The Teaching Pattern of Law Majors Using Artificial Intelligence and Deep Neural Network Under Educational Psychology. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.711520
Yi, P., & Li, Z. (2022). Construction and Management of Intelligent Campus Based on Student Privacy Protection under the Background of Artificial Intelligence and Internet of Things. Mobile Information Systems, 22(1), 2154577. https://doi.org/10.1155/2022/2154577
Yin, W. (2022). Personalized Hybrid Education Framework Based on Neuroevolution Methodologies. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/6925668
Yue, M., Jong, M., & Dai, Y. (2022). Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review. Sustainability, 14(23), 15620. https://doi.org/10.3390/su142315620
Zafari, M., Bazargani, J., Sadeghi-Niaraki, A., & Choi, S. (2022). Artificial Intelligence Applications in K-12 Education: A Systematic Literature Review. IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2022.3179356
Zapata Muriel, F. A., Montoya Zapata, S., & Montoya-Zapata, D. (2024). Dilemas éticos planteados por el auge de la inteligencia artificial: Una mirada desde el transhumanismo. Región Científica, 3(1), 2024225. https://doi.org/10.58763/rc2024225
Zhan, Z., Shen, W., & Lin, W. (2022). Effect of product-based pedagogy on students’ project management skills, learning achievement, creativity, and innovative thinking in a high-school artificial intelligence course. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.849842
Zhang, Y., Yun, Y., An, R., Cui, J., Dai, H., & Shang, X. (2021). Educational Data Mining Techniques for Student Performance Prediction: Method Review and Comparison Analysis. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.698490
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Diego Díaz-Guerra
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.