The potential of artificial intelligence in improving student learning and well-being: innovative pedagogical practices from an educational neuroscience

Authors

DOI:

https://doi.org/10.18050/psiquemag.v13i2.3138

Keywords:

Educational neuroscience, artificial intelligence, pedagogical practices, learning

Abstract

This article seeks to provide a comprehensive overview of the intersection between educational neuroscience, artificial intelligence, and innovative pedagogical practices. The present literature review is based on a qualitative approach, which seeks to analyze and understand the nature and complexity of the integration of educational neuroscience, artificial intelligence, and innovative pedagogical practices in the educational context. The integration of artificial intelligence in the educational field opens up a range of possibilities to improve both student learning and well-being. This technological advancement promises unprecedented personalization in teaching, effectively adapting to the individual needs of each student. This integration has important implications for education, as it can lead to the creation of more effective and personalized learning systems, which can improve student learning and well-being. Although artificial intelligence can offer benefits in terms of efficiency and adaptability, it should not replace the emotional and social connection that educators establish with their students. It is essential that this integration is carried out in an ethical and careful manner, where the well-being and comprehensive development of students are prioritized in a balanced and enriching educational environment.

References

Abramowitz, B., & Antonenko, P. (2022). In-service teachers’ (mis)conceptions of artificial intelligence in K-12 science education. Journal of Research on Technology in Education, 55, 64 - 78. https://doi.org/10.1080/15391523.2022.2119450

Acuña Mendoza, D. L., & Torres Brugés, W. J. (2024). ICT as a Dynamizing Axis in the Generation of Indicators for the Social Appropriation of Knowledge in the Research Groups of the University of La Guajira. Southern perspective / Perspectiva austral, 2, 58. https://doi.org/10.56294/pa202458

Ahmad, S., Rahmat, M., Mubarik, M., Alam, M., & Hyder, S. (2021). Artificial Intelligence and Its Role in Education. Sustainability, 13(22), 12902. https://doi.org/10.3390/su132212902

Amaya Amado, D. P., Cárdenas Diaz, F. A., Cabrera Pantoja, R. D. P., & Bastidas Sanchez, L. M. (2024). Benefits of Artificial Intelligence and its Innovation in Organizations. Multidisciplinar (Montevideo), 1, 15. https://doi.org/10.62486/agmu202315

Andersen, R., Mørch, A., & Litherland, K. (2022). Collaborative learning with block-based programming: investigating human-centered artificial intelligence in education. Behaviour & Information Technology, 41, 1830 - 1847. https://doi.org/10.1080/0144929X.2022.2083981

Araujo Inastrilla, C. R. (2023). Data Visualization in the Information Society. Seminars in Medical Writing and Education, 2, 25. https://doi.org/10.56294/mw202325

Ayouni, S., Hajjej, F., Maddeh, M., & Al-Otaibi, S. (2021). A new ML-based approach to enhance student engagement in online environment. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0258788

Baena-Navarro, R., Serrano-Ardila, L., & Carriazo-Regino, Y. (2024). Innovative model for the integration of ICTs in rural environmental education: Towards a sustainable pedagogy. Southern perspective / Perspectiva austral, 2, 35. https://doi.org/10.56294/pa202435

Baker, R., & Hawn, A. (2021). Algorithmic Bias in Education. International Journal of Artificial Intelligence in Education, 32, 1052 - 1092. https://doi.org/10.1007/s40593-021-00285-9

Barrera León, D., Tello Flores, R. Y., Ramos Guzmán, F., & Pérez Gamboa, A. J. (2024). Acompañamiento a la promoción de proyectos de vida de jóvenes seropositivos. Un estudio cualitativo complejo. Región Científica, 3(1), 2024248. https://doi.org/10.58763/rc2024248

Boussouf, Z., Amrani, H., Zerhouni Khal, M., & Daidai, F. (2024). Artificial Intelligence in Education: A Systematic Literature Review. Data and Metadata, 3, 288. https://doi.org/10.56294/dm2024288

Bozkurt, A., Karadeniz, A., Bañeres, D., Guerrero-Roldán, A., & Rodríguez, M. (2021). Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century. Sustainability, 13(2), 800. https://doi.org/10.3390/SU13020800

Buiten, M. (2019). Towards Intelligent Regulation of Artificial Intelligence. European Journal of Risk Regulation, 10, 41 - 59. https://doi.org/10.1017/err.2019.8

Cabuquin, J. C., Acidre, M. A. S., Manabat, M. A. A., Aruta, M. G. H., Sangutan, J., & Beltran Yu, R. F. (2024). The role of ChatGPT on academic research: Perspectives from filipino students across diverse educational levels. Salud, Ciencia y Tecnología - Serie de Conferencias, 3. https://doi.org/10.56294/sctconf2024.1205

Cañón Solano, A. V., Cardona Arboleda, L. D., Coral García, C. C., & Carmona Dominguez, C. D. (2024). Benefits of artificial intelligence in companies. Management (Montevideo), 1, 17. https://doi.org/10.62486/agma202317

Cantón Balcázar, A. L. (2024). El estado de las habilidades ciudadanas en estudiantes universitarios de Chile, Colombia y México. Región Científica, 3(1). https://doi.org/10.58763/rc2024244

Chavez, H., Chavez-Arias, B., Contreras-Rosas, S., Álvarez-Rodríguez, J., & Raymundo, C. (2023). Artificial neural network model to predict student performance using nonpersonal information. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1106679

Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510

Chiu, T. (2021). A Holistic Approach to the Design of Artificial Intelligence (AI) Education for K-12 Schools. TechTrends, 65, 796 - 807. https://doi.org/10.1007/s11528-021-00637-1

Cope, B., Kalantzis, M., & Searsmith, D. (2020). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53, 1229 - 1245. https://doi.org/10.1080/00131857.2020.1728732

Dai, Y., Liu, A., Qin, J., Guo, Y., Jong, M., Chai, C., & Lin, Z. (2022). Collaborative construction of artificial intelligence curriculum in primary schools. Journal of Engineering Education, 112, 23 - 42. https://doi.org/10.1002/jee.20503

Del Campo Saltos, G., Villlota Oyarvide, W., Andrade Sánchez, E., & Montero Reyes, Y. (2023). Bibliometric analysis on neuroscience, artificial intelligence and robotics studies: Emphasis on disruptive technologies in education. Salud, Ciencia y Tecnología, 3, 362. https://doi.org/10.56294/saludcyt2023362

Dignum, V. (2021). The role and challenges of education for responsible AI. London Review of Education, 19(1). https://doi.org/10.14324/LRE.19.1.01

Dubinsky, J., Guzey, S., Schwartz, M., Roehrig, G., MacNabb, C., Schmied, A., Hinesley, V., Hoelscher, M., Michlin, M., Schmitt, L., Ellingson, C., Chang, Z., & Cooper, J. (2019). Contributions of Neuroscience Knowledge to Teachers and Their Practice. The Neuroscientist, 25, 394 - 407. https://doi.org/10.1177/1073858419835447

Estrada-Araoz, E. G., Manrique-Jaramillo, Y. V., Díaz-Pereira, V. H., Rucoba-Frisancho, J. M., Paredes-Valverde, Y., Quispe-Herrera, R., & Quispe-Paredes, D. R. (2024). Assessment of the level of knowledge on artificial intelligence in a sample of university professors: A descriptive study. Data and Metadata, 3, 285. https://doi.org/10.56294/dm2024285

Feng, S., & Law, N. (2021). Mapping Artificial Intelligence in Education Research: a Network‐based Keyword Analysis. International Journal of Artificial Intelligence in Education, 31, 277-303. https://doi.org/10.1007/S40593-021-00244-4

Furlong, D., & Lester, J. (2022). Toward a Practice of Qualitative Methodological Literature Reviewing. Qualitative Inquiry, 29, 669 - 677. https://doi.org/10.1177/10778004221131028

Gama Espinosa, J. C., Leiva Sánchez, L. M., & Fajardo Pereira, M. A. (2024). Benefits of Artificial Intelligence in human talent management. Multidisciplinar (Montevideo), 1, 14. https://doi.org/10.62486/agmu202314

García-Martínez, I., Fernández-Batanero, J., Fernández-Cerero, J., & León, S. (2023). Analysing the Impact of Artificial Intelligence and Computational Sciences on Student Performance: Systematic Review and Meta-analysis. Journal of New Approaches in Educational Research, 12, 171-197. https://doi.org/10.7821/naer.2023.1.1240

Gonzalez-Argote, J., Alonso-Galbán, P., Vitón-Castillo, A. A., Lepez, C. O., Castillo-Gonzalez, W., Bonardi, M. C., & Gómez Cano, C. A. (2023). Trends in scientific output on artificial intelligence and health in Latin America in Scopus. ICST Transactions on Scalable Information Systems. https://doi.org/10.4108/eetsis.vi.3231

Gonzalez-Argote, J., Lepez, C. O., Castillo-Gonzalez, W., Bonardi, M. C., Gómez Cano, C. A., & Vitón-Castillo, A. A. (2023). Use of real-time graphics in health education: A systematic review. EAI Endorsed Transactions on Pervasive Health and Technology, 9, e3. https://doi.org/10.4108/eetpht.v9i.3209

Hamal, O., Faddouli, N., Harouni, M., & Lu, J. (2022). Artificial Intelligent in Education. Sustainability, 14(5), 52862. https://doi.org/10.3390/su14052862

Holzer, J., Lüftenegger, M., Käser, U., Korlat, S., Pelikan, E., Schultze-Krumbholz, A., Spiel, C., Wachs, S., & Schober, B. (2021). Students' basic needs and well‐being during the COVID‐19 pandemic: A two‐country study of basic psychological need satisfaction, intrinsic learning motivation, positive emotion and the moderating role of self‐regulated learning. International Journal of Psychology, 56, 843 - 852. https://doi.org/10.1002/ijop.12763

Immordino‐Yang, M., Darling-Hammond, L., & Krone, C. (2019). Nurturing Nature: How Brain Development Is Inherently Social and Emotional, and What This Means for Education. Educational Psychologist, 54, 185 - 204. https://doi.org/10.1080/00461520.2019.1633924

Iterbeke, K., Witte, K., & Schelfhout, W. (2020). The effects of computer-assisted adaptive instruction and elaborated feedback on learning outcomes. A randomized control trial. Computers in Human Behavior., 120, 106666. https://doi.org/10.1016/j.chb.2020.106666

Jiménez-Pitre, I., Molina-Bolívar, G., & Gámez Pitre, R. (2023). Visión sistémica del contexto educativo tecnológico en Latinoamérica. Región Científica, 2(1), 202358. https://doi.org/10.58763/rc202358

Junco Luna, G. J. (2023). Study on the impact of artificial intelligence tools in the development of university classes at the school of communication of the Universidad Nacional José Faustino Sánchez Carrión. Metaverse Basic and Applied Research, 2, 51. https://doi.org/10.56294/mr202351

Kim, H., Chae, Y., Kim, S., & Im, C. (2023). Development of a Computer-Aided Education System Inspired by Face-to-Face Learning by Incorporating EEG-Based Neurofeedback Into Online Video Lectures. IEEE Transactions on Learning Technologies, 16, 78-91. https://doi.org/10.1109/TLT.2022.3200394

Klimova, B., Pikhart, M., & Kacetl, J. (2023). Ethical issues of the use of AI-driven mobile apps for education. Frontiers in Public Health, 10. https://doi.org/10.3389/fpubh.2022.1118116

Klos, M., Escoredo, M., Joerin, A., Lemos, V., Rauws, M., & Bunge, E. (2021). Artificial Intelligence–Based Chatbot for Anxiety and Depression in University Students: Pilot Randomized Controlled Trial. JMIR Formative Research, 5. https://doi.org/10.2196/20678

Kumar, D., Haque, A., Mishra, K., Islam, F., Kumar Mishra, B., & Ahmad, S. (2023). Exploring the Transformative Role of Artificial Intelligence and Metaverse in Education: A Comprehensive Review. Metaverse Basic and Applied Research, 2, 55. https://doi.org/10.56294/mr202355

Li, C., Yang, M., Zhang, Y., & Lai, K. (2022). An Intelligent Mental Health Identification Method for College Students: A Mixed-Method Study. International Journal of Environmental Research and Public Health, 19. https://doi.org/10.3390/ijerph192214976

Liu, J., & Wang, H. (2022). Analysis of Educational Mental Health and Emotion Based on Deep Learning and Computational Intelligence Optimization. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.898609

López González, Y. Y. (2023). Aptitud digital del profesorado frente a las competencias TIC en el siglo XXI: una evaluación de su desarrollo. Región Científica, 2(2), 2023119. https://doi.org/10.58763/rc2023119

Luan, H., Géczy, P., Lai, H., Gobert, J., Yang, S., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C. (2020). Challenges and Future Directions of Big Data and Artificial Intelligence in Education. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.580820

MacCann, C., Jiang, Y., Brown, L., Double, K., Bucich, M., & Minbashian, A. (2019). Emotional intelligence predicts academic performance: A meta-analysis. Psychological bulletin, 146(2), 150-186. https://doi.org/10.1037/bul0000219

Machuca-Contreras, F., Lepez, C. O., & Canova-Barrios, C. (2024). Influence of virtual reality and augmented reality on mental health. Gamification and Augmented Reality, 2, 25. https://doi.org/10.56294/gr202425

Maghsudi, S., Lan, A., Xu, J., & Schaar, M. (2021). Personalized Education in the Artificial Intelligence Era: What to Expect Next. IEEE Signal Processing Magazine, 38, 37-50. https://doi.org/10.1109/MSP.2021.3055032

Miranda-Moreno, V. M., & Sandoval-Obando, E. (2024). La educación expandida en contextos educativos formales e informales. Región Científica, 3(2), 2024321. https://doi.org/10.58763/rc2024321

Murtaza, M., Ahmed, Y., Shamsi, J., Sherwani, F., & Usman, M. (2022). AI-Based Personalized E-Learning Systems: Issues, Challenges, and Solutions. IEEE Access, 10, 81323-81342. https://doi.org/10.1109/access.2022.3193938

Mykhaylenko, V., Safonova, N., Ilchenko, R., Ivashchuk, A., & Babik, I. (2024). Using artificial intelligence to personalise curricula and increase motivation to learn, taking into account psychological aspects. Data and Metadata, 3. https://doi.org/10.56294/dm2024.241

Nadji-Tehrani, M., & Eslami, A. (2020). A Brain-Inspired Framework for Evolutionary Artificial General Intelligence. IEEE Transactions on Neural Networks and Learning Systems, 31, 5257-5271. https://doi.org/10.1109/TNNLS.2020.2965567

Nazari, N., Shabbir, M., & Setiawan, R. (2021). Application of Artificial Intelligence powered digital writing assistant in higher education: randomized controlled trial. Heliyon, 7. https://doi.org/10.1016/j.heliyon.2021.e07014

Ninaus, M., & Sailer, M. (2022). Closing the loop – The human role in artificial intelligence for education. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.956798

Noroña González, Y., Colala Troya, A. L., & Peñate Hernández, J. I. (2023). La orientación para la proyección individual y social en la educación de jóvenes y adultos: Un estudio mixto sobre los proyectos de vida. Región Científica, 2(2), 202389. https://doi.org/10.58763/rc202389

Ogolodom, M. P., Daniel Ochong, A., Brownson Egop, E., Ugwem Jeremiah, C., Kenneth Madume, A., Nyenke, C. U., Dambele, M. Y., Joseph, D. Z., Bakre, A. F. K., Balogun, E. O., Alazigha, N., Okeji, M. C., Ordu, K. S., Hyacienth Uche Chiegwu, H. U. C., Johnson, J., Mbaba, A. N. M., & Kelechi Nwodo, V. (2023). Knowledge and perception of healthcare workers towards the adoption of artificial intelligence in healthcare service delivery in Nigeria. AG Salud, 1, 16. https://doi.org/10.62486/agsalud202316

Oladokun, B. D., Dogara, K., & Yusuf, M. (2024). Students’ Attitudes and Experiences with ChatGPT as a Reference Service Tool in a Nigerian University: A Comprehensive Analysis of User Perceptions. Gamification and Augmented Reality, 2, 36. https://doi.org/10.56294/gr202436

Olusegun Oyetola, S., Oladokun, B. D., & Dogara, K. (2024). LIS Educators’ Perception Towards the Adoption of AI Tools in Nigerian Library Schools. Metaverse Basic and Applied Research, 3, 65. https://doi.org/10.56294/mr202465

Ouatik, F., Erritali, M., Ouatik, F., & Jourhmane, M. (2022). Predicting Student Success Using Big Data and Machine Learning Algorithms. International Journal of Emerging Technologies in Learning., 17, 236-251. https://doi.org/10.3991/ijet.v17i12.30259

Pagano, T., Loureiro, R., Lisboa, F., Peixoto, R., Guimarães, G., Cruz, G., Araujo, M., Santos, L., Cruz, M., Oliveira, E., Winkler, I., & Nascimento, E. (2023). Bias and Unfairness in Machine Learning Models: A Systematic Review on Datasets, Tools, Fairness Metrics, and Identification and Mitigation Methods. Big Data and Cognitive Computing, 7, 15. https://doi.org/10.3390/bdcc7010015

Pal, R., Adhikari, D., Heyat, M., Guragai, B., Lipari, V., Ballester, J., Díez, I., Abbas, Z., & Lai, D. (2022). A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY. Bioengineering, 9. https://doi.org/10.3390/bioengineering9120793

Palomino Quispe, J. F., Choque-Flores, L., Castro León, A. L., Requis Carbajal, L. V., Ferrer-Peñaranda, L.-A., García-Huamantumba, E., Dávila-Morán, R. C., & Velarde Dávila, L. (2024). The Transformative Role of Technology in Medical Education. Salud, Ciencia y Tecnología, 4, 657. https://doi.org/10.56294/saludcyt2024657

Pérez Gamboa, A. J., García Acevedo, Y., García Batán, J., & Raga Aguilar, L. M. (2022). La configuración de proyectos de vida desarrolladores: Un programa para su atención psicopedagógica. Actualidades Investigativas en Educación, 23(1), 1–35. https://doi.org/10.15517/aie.v23i1.50678

Pérez Valdivia, Y. O., Rojas Sánchez, G. A., Sánchez Castillo, V., & Pérez Gamboa, A. J. (2024). La categoría bienestar psicológico y su importancia en la práctica asistencial: Una revisión semisistemática. Revista Información Científica, 103. https://doi.org/10.5281/ZENODO.10615337

Posso-Pacheco, R. J., Gutiérrez-Ramos, E. A., Chica-Montero, N. J., Alemán-Aguay, J. A., Rondal-Guanotasig, M. D. C., & Mullo-Cóndor, K. S. (2024). Evaluation of Artificial Intelligence Technologies and the Metaverse in Adapting Pedagogical Strategies. Metaverse Basic and Applied Research, 3, 68. https://doi.org/10.56294/mr202468

Reiss, M. (2021). The use of AI in education: Practicalities and ethical considerations. London Review of Education, 19(1). https://doi.org/10.14324/LRE.19.1.05

Richards, B., Lillicrap, T., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., Clopath, C., Costa, R., Berker, A., Ganguli, S., Gillon, C., Hafner, D., Kepecs, A., Kriegeskorte, N., Latham, P., Lindsay, G., Miller, K., Naud, R., Pack, C., Poirazi, P., Roelfsema, P., Sacramento, J., Saxe, A., Scellier, B., Schapiro, A., Senn, W., Wayne, G., Yamins, D., Zenke, F., Zylberberg, J., Thérien, D., & Kording, K. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22, 1761 - 1770. https://doi.org/10.1038/s41593-019-0520-2

Rozov, K. (2020). About the need to change the content of professional training of a future informatics teacher in artificial intelligence. Informatics in education, 12-26. https://doi.org/10.32517/0234-0453-2020-35-4-12-26

Ruiz Díaz De Salvioni, V. V. (2023). Estrategias innovadoras para un aprendizaje continuo y efectivo durante emergencias sanitarias en Ciudad del Este. Región Científica, 2(1), 202338. https://doi.org/10.58763/rc202338

Sahlgren, O. (2021). The politics and reciprocal (re)configuration of accountability and fairness in data-driven education. Learning, Media and Technology, 48, 95 - 108. https://doi.org/10.1080/17439884.2021.1986065

Salas-Pilco, S., Xiao, K., & Oshima, J. (2022). Artificial Intelligence and New Technologies in Inclusive Education for Minority Students: A Systematic Review. Sustainability, 14(20), 13572. https://doi.org/10.3390/su142013572

Sánchez Cabezas, P., Amaiquema Márquez, F. A., & Ruíz Porras, M. C. (2024). Orientación educativa y formación continua del profesor universitario. Reflexiones de una experiencia en Ecuador. Región Científica, 3(1), 2024240. https://doi.org/10.58763/rc2024240

Schwartz, M., Hinesley, V., Chang, Z., & Dubinsky, J. (2019). Neuroscience knowledge enriches pedagogical choices. Teaching and Teacher Education, 83, 87-98. https://doi.org/10.1016/J.TATE.2019.04.002

Siddaway, A., Wood, A., & Hedges, L. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual review of psychology, 70, 747-770. https://doi.org/10.1146/annurev-psych-010418-102803

Srivastava, S., Varshney, A., Katyal, S., Kaur, R., & Gaur, V. (2021). A smart learning assistance tool for inclusive education. Journal of Intelligent & Fuzzy Systems., 40, 11981-11994. https://doi.org/10.3233/JIFS-210075

Tapalova, O., Zhiyenbayeva, N., & Gura, D. (2022). Artificial Intelligence in Education: AIEd for Personalised Learning Pathways. Electronic Journal of e-Learning, 20(5). https://doi.org/10.34190/ejel.20.5.2597

Tymoshenko, N., Gordiichuk, G., Davydova, Z., Sirenko, P., & Dorozhko, Y. (2024). Utilising artificial intelligence in education: Current trends, challenges, and future directions. Salud, Ciencia y Tecnología - Serie de Conferencias, 3. https://doi.org/10.56294/sctconf2024.1134

Valencia Celis, A. U., Rosas Patiño, G., & Sánchez Castillo, V. (2023). La gestión del conocimiento ambiental: Propuestas en sistemas de educación. Bibliotecas. Anales de Investigación, 19(2), 7. http://revistas.bnjm.sld.cu/index.php/BAI/article/view/654

Velásquez Castro, L. A., & Paredes-Águila, J. A. (2024). Revisión sistemática sobre los desafíos que enfrenta el desarrollo e integración de las tecnologías digitales en el contexto escolar chileno, desde la docencia. Región Científica, 3(1), 2024226. https://doi.org/10.58763/rc2024226

Wei, X., Sun, S., Wu, D., & Zhou, L. (2021). Personalized Online Learning Resource Recommendation Based on Artificial Intelligence and Educational Psychology. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.767837

Wilson, S., & Anagnostopoulos, D. (2021). Methodological Guidance Paper: The Craft of Conducting a Qualitative Review. Review of Educational Research, 91, 651 - 670. https://doi.org/10.3102/00346543211012755

Xuan, D., Zhu, D., & Xu, W. (2021). The Teaching Pattern of Law Majors Using Artificial Intelligence and Deep Neural Network Under Educational Psychology. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.711520

Yi, P., & Li, Z. (2022). Construction and Management of Intelligent Campus Based on Student Privacy Protection under the Background of Artificial Intelligence and Internet of Things. Mobile Information Systems, 22(1), 2154577. https://doi.org/10.1155/2022/2154577

Yin, W. (2022). Personalized Hybrid Education Framework Based on Neuroevolution Methodologies. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/6925668

Yue, M., Jong, M., & Dai, Y. (2022). Pedagogical Design of K-12 Artificial Intelligence Education: A Systematic Review. Sustainability, 14(23), 15620. https://doi.org/10.3390/su142315620

Zafari, M., Bazargani, J., Sadeghi-Niaraki, A., & Choi, S. (2022). Artificial Intelligence Applications in K-12 Education: A Systematic Literature Review. IEEE Access, PP, 1-1. https://doi.org/10.1109/ACCESS.2022.3179356

Zapata Muriel, F. A., Montoya Zapata, S., & Montoya-Zapata, D. (2024). Dilemas éticos planteados por el auge de la inteligencia artificial: Una mirada desde el transhumanismo. Región Científica, 3(1), 2024225. https://doi.org/10.58763/rc2024225

Zhan, Z., Shen, W., & Lin, W. (2022). Effect of product-based pedagogy on students’ project management skills, learning achievement, creativity, and innovative thinking in a high-school artificial intelligence course. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.849842

Zhang, Y., Yun, Y., An, R., Cui, J., Dai, H., & Shang, X. (2021). Educational Data Mining Techniques for Student Performance Prediction: Method Review and Comparison Analysis. Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.698490

Published

2024-12-20

How to Cite

Díaz-Guerra, D. (2024). The potential of artificial intelligence in improving student learning and well-being: innovative pedagogical practices from an educational neuroscience. PsiqueMag, 13(2), 147–159. https://doi.org/10.18050/psiquemag.v13i2.3138

Issue

Section

Research Articles