Categorization of chicken feet by artificial vision
DOI:
https://doi.org/10.18050/ingnosis.v8i1.2442Keywords:
Categorization, Defects, LabVIEW, Artificial visiónAbstract
In order to implement artificial vision, check its efficiency and report on its importance through the LabVIEW program, which will contribute to support the operators in the selection of chicken feet, aiming to improve the plant productivity, as well as improving the quality of the finished product. The current status of the chicken feet categorization process and its sale to the final consumer was investigated. An adequate support structure was designed to develop the processing, verifying that all the tools and methodology have a good operation. Subsequently, the functionality of the LabVIEW 2020 software was carried out, which will detect the defects of chicken feet such as bruises, skins and calluses for their respective categorization, it was developed using different software tools with their respective programming; For this, the three defects were analyzed with a total sample amount of 14 chicken feet, of which skin remnants 2, bruises 2 and calluses 10 were classified into three groups, obtaining 81.15% efficiency. The evidence that we present above demonstrates the advantage of being able to include artificial vision in the processes of a company, in our case the operation of the LabVIEW program was used, which not only benefited the company and workers, but also due to its great functionality improves the work of the operators, being an important support every day to provide a better service to customers.
References
Atria Innovation. (27 de abril de 2020). Atria Innovation. Obtenido de Atria Innovación: https://www.atriainnovation.com/vision-artificial-ventajas-aplicaciones/
Díaz, M. (2017). Población, Muestra y Muestreo. Universidad Autónoma del Estado de Hidalgo.
Engineer Ambitiously. (2021). Engineer Ambitiously. Obtenido de Engineer Ambitiously: https://www.ni.com/es-cr/shop/software/products/labview.html
García, M. (21 de Julio de 2021). El País. Obtenido de El País: https://rurales.elpais.com.uy/region/las-patas-de-pollo-son-ya-una-de-las-partes-mas-caras-de-la-canal-en-brasil
Gutiérrez, M. (16 de junio de 2021). AviNews. Obtenido de AviNews: https://avicultura.info/peru-produccion-de-carne-de-pollo-exhibe-caida-de-18-en-2021/
Organización de la Naciones Unidas para la Alimentación y la Agricultura. (2021). Organización de la Naciones Unidas para la Alimentación y la Agricultura. Obtenido de Organización de la Naciones Unidas para la Alimentación y la Agricultura: https://www.fao.org/poultry-production-products/socio-economic-aspects/markets-trade/es/
Paguay, D., & Valerezo, L. (2018). Diseño e implementación de un prototipo clasificador de huevo de gallina basado en las imperfecciones de la cáscara aplicando visión artificial. Riobamba: Escuela Superior Politécnica de Chimborazo.
Portero, P., & Mena, B. (2017). Desarrollo de un prototipo para el control de calidad de la carne bovina determinada por sus características organolépticas, basado en un sistema automático de inspección por visión artificial. Riobamba: Escuela Superior Politécnica de Chimborazo.
Wang, K., & Jiang, T. (2019). Degradación basada en visión artificial microscópica Monitoreo de bobina electromagnética de bajo voltaje Aislamiento mediante Ensemble Learning en un marco de computación de membrana. China: IEE Acces.
Yiqin, B., Hongbing, L., & Qiang, Z. (2021). Sistema de detección de pollos muertos y enfermos en granjas a gran escala basado en inteligencia artificial. AIMS press.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 INGnosis
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.