Development of an artificial vision algorithm with neural networks for the detection of cracks in concrete structures

Authors

  • Kevin Rubén Bartra Aguilar Universidad Privada del Norte, Perú
  • Carlos Wilfredo Montenegro Honores Universidad Privada del Norte
  • Carlos Andrés Pretell Ramirez Universidad Privada del Norte
  • Raúl Alfredo Méndez Parodi Universidad Autónoma del Perú

DOI:

https://doi.org/10.18050/ingnosis.v9i1.3171

Keywords:

Fissures, image processing, artificial vision

Abstract

An algorithm was developed to detect fissures in concrete structures applying artificial vision and image processing techniques. The algorithm centers its operation on an Asus laptop with an Intel Core i5 processor and Windows 11 64-bit, which, connected to a cell phone camera with the iVCam application, acquires images of the concrete applying the basic photography technique. The acquired images are processed within the laptop and statistical methods and artificial vision are used to detect anomalies present in concrete or concrete structures, such as cracks in grouting. From the tests carried out with the algorithm, a system efficiency of 93.02% was obtained as a result. It is concluded that the implementation of the algorithm improves the quality and good condition of the concrete at the same time allows a greater efficiency of the process, carrying out daily production control in a stored database.

References

Alarcon Carpio, J. C., & Poma Astete, R. F. (2021). Desarrollo de un algoritmo computacional de detección de equipos de protección eléctrica en personas, orientado a sistemas de vigilancia basados en cámaras IP. http://hdl.handle.net/10757/657930.

Benallal, M. A., & Tayeb, M. S. (2023). An image-based convolutional neural network system for road defects detection. IAES International Journal of Artificial Intelligence, 12(2), 577.

Cifuentes, L. V. T., Marulanda, J., & Thomson, P. (2021). Detección de grietas en el pavimento usando técnicas de procesamiento de imágenes y redes neuronales artificiales. Encuentro Internacional de Educación en Ingeniería. https://acofipapers.org.

Dung, C. V. (2019). Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99, 52-58.

Huyan, J., Li, W., Tighe, S., Zhai, J., Xu, Z., & Chen, Y. (2019). Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network. Automation in Construction, 107, 102946.

Kim, H., Ahn, E., Shin, M., & Sim, S. H. (2019). Crack and noncrack classification from concrete surface images using machine learning. Structural Health Monitoring, 18(3), 725-738.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90.

Lee, B. Y., Kim, Y. Y., Yi, S. T., & Kim, J. K. (2013). Automated image processing technique for detecting and analysing concrete surface cracks. Structure and Infrastructure Engineering, 9(6), 567–577. https://doi.org/10.1080/15732479.2011.593891

Meléndez, R. P., Herrera, A., Pérez, J. L., & Padrón-Gómez, A. (2000). El modelo neuronal de Mcculloch y Pitts. Interpretación Comparativa del Modelo XV CONGRESO NACIONAL DE INSTRUMENTACIÓN, Guadalajara Jalisco, México.

Mohan, A., & Poobal, S. (2018). Crack detection using image processing: A critical review and analysis. alexandria engineering journal, 57(2), 787-798. https://doi.org/10.1016/j.aej.2017.01.020.

Moon, H. G., & Kim, J. H. (2011). Inteligent crack detecting algorithm on the concrete crack image using neural network. Proceedings of the 28th International Symposium on Automation and Robotics in Construction, ISARC 2011, 1461–1467. https://doi.org/10.22260/isarc2011/0279.

Nehdi, M. L., & Soliman, A. M. (2012). Artificial Intelligence Model for Early-Age Autogenous Shrinkage of Concrete. ACI Materials Journal, 109(3), 353–362. https://doi.org/10.14359/51683826.

Noori Hoshyar, A., Rashidi, M., Liyanapathirana, R., & Samali, B. (2019). Algorithm development for the non-destructive testing of structural damage. Applied Sciences, 9(14). https://doi.org/10.3390/app9142810.

Ortega Triana, J. A. (2021). Aprendizaje profundo para la detección automática de fisuras de hormigón usando redes neuronales convolucionales. http://hdl.handle.net/10251/174954.

Ortiz Castillo, J. (2015). Sistema de visión artificial humanoide para reconocimiento de formas y patrones de objetos, aplicando redes neuronales y algoritmos de aprendizaje automático. https://hdl.handle.net/20.500.14138/2010.

Pozzo, M. H. C. (2020). Uso de inteligencia artificial para la detección automatizada de fisuras en estructuras de hormigón armado (Doctoral dissertation, Pontificia Universidad Catolica de Chile (Chile)).

Silva, W. R. L. D., & Lucena, D. S. D. (2018). Concrete cracks detection based on deep learning image classification. In Proceedings (Vol. 2, No. 8, p. 489). MDPI. https://doi.org/10.3390/icem18-05387.

Spencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. Engineering, 5(2), 199–222. https://doi.org/10.1016/j.eng.2018.11.030.

Thatoi, D. N. (2013). Application of Artificial Intelligence Techniques for Detection of Cracks-A Review. International Journal of Engineering and Technology, 5(1), 57–59. https://doi.org/10.7763/ijet.2013.v5.510

Published

2023-05-06

How to Cite

Bartra Aguilar, K. R., Montenegro Honores, C. W., Pretell Ramirez, C. A., & Méndez Parodi, R. A. (2023). Development of an artificial vision algorithm with neural networks for the detection of cracks in concrete structures. INGnosis, 9(1), 22–33. https://doi.org/10.18050/ingnosis.v9i1.3171

Issue

Section

Original Article

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.