Solución numérica de una ecuación de difusión - reacción por el método de diferencias finitas
DOI:
https://doi.org/10.18050/td.v15i1.1873Palabras clave:
Problema de difusión – reacción, Solución explosiva, Método de semigrupos, Método de diferencias finitas, Esquema explícitoResumen
En el presente artículo se ha resuelto de manera numérica el problema de difusión – reacción uno dimensional:
donde f y u on elementos de ciertos espacios funcionales. Los resultados de existencia y unicidad de soluciones así 0 como la determinación de soluciones explosivas han sido demostrados utilizando el Método de Semigrupos de Operadores. Para encontrar la solución numérica se ha empleado el Método de Diferencias Finitas (MDF) con el esquema explícito, esto es, se han discretizado la derivada espacial de segundo orden utilizando diferencias centradas y la derivada temporal usando diferencias de primer orden hacia adelante. La programación del MDF se ha desarrollado en dos partes: la escritura del código y ejecución se realizaron en lenguaje C y, las gráficas fueron visualizadas en Scilab. Así mismo se han estudiado y analizado los criterios de estabilidad, consistencia y convergencia, llegando a concluir que el MDF es condicionalmente estable, consistente y convergente.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2017 Tecnología & Desarrollo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.