Spirometry in patients infected with human immunodeficiency virus
DOI:
https://doi.org/10.18050/revistamedicavallejiana.v11i2.03Keywords:
HIV, spirometry, lung function test, lung diseaseAbstract
Objective: To determine if the spirometric evaluation in patients infected with HIV is different than that of those not infected with HIV. Material and Methods: An analytical study of double retrospective cohort was carried out. The study sample consisted of 22 patients who have met the selection criteria divided in equal proportion into two groups HIV(+) and HIV(-) who underwent a spirometry. A linear regression test was used with a model considering only age, sex and HIV status as intervening factors, considering significance (p value) of < 0,05. The study was conducted at the Victor Lazarte Echegaray Hospital in Trujillo. Results: In the HIV(+) group, a normal spirometric pattern was found in 36,36% of the participants and an altered spirometric pattern in 63,64%. In the HIV(-) group a normal spirometric pattern was found in 72,72% and an altered spirometric pattern in 27,27%. In the linear regression model, no statistical significance was found when compared with age, sex or HIV condition. Conclusion: Spirometries are similar regardless of the HIV condition but this is affected by the sample size.
References
Drummond MB, Kirk GD. HIV-associated obstructive lung diseases: insights and implications for the clinician. Lancet Respir Med. 2014; 2(7): 583–92.
Crothers K, McGinnis K, Kleerup E, Wongtrakool C, Hoo GS, Kim J, et al. HIV infection is associated with reduced pulmonary diffusing capacity. J Acquir Immune Defic Syndr 1999; 64(3): 271–8.
Drummond Mb, Huang L, Diaz Pt, Kirk Gd, Kleerup Ec, Morris A, et al. Factors associated with abnormal spirometry among HIV-infected individuals. AIDS Lond Engl [Internet]. 2015 [citado 24 de noviembre de 2019]; 29(13): 1691–700. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571285/
Kristoffersen U, Lebech A-M, Mortensen J, Gerstoft J, Gutte H, Kjaer A. Changes in lung function of HIV-infected patients: A 4·5-year follow-up study. Clin Physiol Funct Imaging. 2012; 32: 288–95.
Association Between CD4+, Viral Load, and Pulmonary Function in HIV. - PubMed - NCBI [Internet]. [citado 24 de noviembre de 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28647827
Bard M, Couderc LJ, Saimot AG, Scherrer A, Frachon I, Seigneur F, et al. Accelerated obstructive pulmonary disease in HIV infected patients with bronchiectasis. Eur Respir J. 1998; 11(3): 771–5.
Camus F, de Picciotto C, Gerbe J, Matheron S, Perronne C, Bouvet E. Pulmonary function tests in HIV-infected patients. AIDS Lond Engl. 1993; 7(8): 1075–9.
Mwalukomo T, Rylance S, Webb E, Anderson S, O’Hare BA-M, van Oosterhout JJ, et al. Clinical characteristics and lung function in older children vertically infected with Human Immunodeficiency Virus in Malawi. 2016 [citado 24 de noviembre de 2019]; Disponible en: https://research-repository.st-andrews.ac.uk/handle/10023/7361
Shirley DK, Kaner RJ, Glesby MJ. Screening for Chronic Obstructive Pulmonary Disease (COPD) in an Urban HIV Clinic: A Pilot Study. AIDS Patient Care STDs [Internet]. 2015 [citado 24 de noviembre de 2019]; 29(5): 232–9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4410819/
Varkila MRJ, Vos AG, Barth RE, Tempelman HA, Devillé WLJ, Coutinho RA, et al. The association between HIV infection and pulmonary function in a rural African population. PLoS ONE [Internet]. 2019 [citado 24 de noviembre de 2019]; 14(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333365/
Drummond Mb, Merlo Ca, Astemborski J, Marshall Mm, Kisalu A, Mcdyer Jf, et al. The effect of HIV infection on longitudinal lung function decline among injection drug users: a prospective cohort. AIDS Lond Engl [Internet]. 15 de mayo de 2013 [citado 24 de noviembre de 2019]; 27(8): 1303–11. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3953568/
Gelman M, King M, Neal D, Pacht E, Clanton T, Diaz P. Focal AirTrapping in Patients with HIV Infection: CT Evaluation and Correlation with Pulmonary Function Test Results. AJR Am J Roentgenol. 1999; 172: 1033–8.
Drummond MB, Huang L, Diaz PT, Kirk GD, Kleerup EC, Morris A, et al. Factors associated with abnormal spirometry among HIV-infected individuals. AIDS Lond Engl [Internet]. 2015 [citado 24 de noviembre de 2019]; 29(13): 1691–700. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571285/
Gingo MR, George MP, Kessinger CJ, Lucht L, Rissler B, Weinman R, et al. Pulmonary function abnormalities in HIV-infected patients during the current antiretroviral therapy era. Am J Respir Crit Care Med. 2010; 182(6): 790–6.
Rosen MJ, Lou Y, Kvale PA, Rao AV, Jordan MC, Miller A, et al. Pulmonary function tests in HIV-infected patients without AIDS. Pulmonary Complications of HIV Infection Study Group. Am J Respir Crit Care Med. 1995; 152(2): 738–45.
Nakamura H, Tateyama M, Tasato D, Haranaga S, Ishimine T, Higa F, et al. The prevalence of airway obstruction among Japanese HIV-positive male patients compared with general population; a case-control study of single center analysis. J Infect Chemother Off J Jpn Soc Chemother. 2014; 20(6): 361–4.
Backer V, Nybo Jensen B, Pedersen C, Hertz JB, Jensen TH. Time-related decrease in diffusion capacity in HIV-infected patients with impaired immune function. Scand J Infect Dis. 1992; 24(1): 29–34.
Leung JM, Liu JC, Mtambo A, Ngan D, Nashta N, Guillemi S, et al. The determinants of poor respiratory health status in adults living with human immunodeficiency virus infection. AIDS Patient Care STDs. 2014; 28(5): 240–7.
Sampériz G, Guerrero D, López M, Valera JL, Iglesias A, Ríos A, et al. Prevalence of and risk factors for pulmonary abnormalities in HIV-infected patients treated with antiretroviral therapy. HIV Med. 2014; 15(6): 321–9.
Gingo MR, He J, Wittman C, Fuhrman C, Leader JK, Kessinger C, et al. Contributors to diffusion impairment in HIV-infected persons. Eur Respir J. 2014; 43(1): 195–203.
Makinson A, Hayot M, Eymard-Duvernay S, Ribet C, Raffi F, Pialoux G, et al. HIV is associated with airway obstruction: A matched controlled study. AIDS. 2017; 32:1.
Akanbi M, Taiwo B, Achenbach C, Ozoh O, Obaseki D, Sule H, et al. HIV Associated Chronic Obstructive Pulmonary Disease in Nigeria. J AIDS Clin Res. 2015; 6.
Gingo MR, Nouraie M, Kessinger CJ, Greenblatt RM, Huang L, Kleerup EC, et al. Decreased Lung Function and All-Cause Mortality in HIV-infected Individuals. Ann Am Thorac Soc [Internet]. 2018 [citado 24 de noviembre de 2019]; 15(2): 192–9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822404/
Gingo MR, Nouraie M, Kessinger CJ, Greenblatt RM, Huang L, Kleerup EC, et al. Decreased Lung Function and All-Cause Mortality in HIV-infected Individuals. Ann Am Thorac Soc. 2018; 15(2): 192–9.
Ronit A, Lundgren J, Afzal S, Benfield T, Roen A, Mocroft A, et al. Airflow limitation in people living with HIV and matched uninfected controls. Thorax. 2018; 73(5): 431–8.
Chhabra SK. Interpretation of Spirometry: Selection of Predicted Values and Defining Abnormality. Indian J Chest Dis Allied Sci. 2015; 57(2): 91–105.
Wood DM. “Pack year” smoking histories: what about patients who use loose tobacco? Tob Control [Internet]. 2005 [citado 24 de noviembre de 2019]; 14(2): 141–2.
Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J [Internet]. 2005 [citado 24 de noviembre de 2019]; 26(2): 319–38. Disponible en: https://erj.ersjournals.com/content/26/2/319
Gólczewski T, Lubiński W, Chciałowski A. A mathematical reason for FEV1/FVC dependence on age [Internet]. Respiratory Research. 2012 [citado 24 de noviembre de 2019]. Disponible en: https://respiratory- research.biomedcentral.com/articles/10.1186/1465-9921-13-57
GOLD Spirometry Guide [Internet]. Global Initiative for Chronic Obstructive Lung Disease - GOLD. [citado 24 de noviembre de 2019]. Disponible en: https://goldcopd.org/gold-spirometry-guide/
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013; 310(20): 2191–4.
Crothers K, Thompson BW, Burkhardt K, Morris A, Flores SC, Diaz PT, et al. HIV-associated lung infections and complications in the era of combination antiretroviral therapy. Proc Am Thorac Soc [Internet]. 2011 [citado 17 de noviembre de 2019]; 8(3): 275–81. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3132785/
Gingo MR, Nouraie M, Kessinger CJ, Greenblatt RM, Huang L, Kleerup EC, et al. Decreased Lung Function and All-Cause Mortality in HIV-infected Individuals. Ann Am Thorac Soc [Internet]. 2018 [citado 17 de noviembre de 2019]; 15(2): 192–9. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822404/
Hair J, Sarstedt M, Hopkins L, Kuppelwieser V. Partial Least Squares Structural Equation Modeling (PLS-SEM): An Emerging Tool for Business Research. Eur Bus Rev. 2014; 26: 106–21.
Sarstedt M, Mooi E. Regression Analysis. En: A Concise Guide to Market Research [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014 [citado 26 de mayo de 2020]. p. 193–233. (Springer Texts in Business and Economics). Disponible en: http://link.springer.com/10.1007/978-3-642- 53965-7_7
Ronit A, Lundgren J, Afzal S, Benfield T, Roen A, Mocroft A, et al. Airflow limitation in people living with HIV and matched uninfected controls. Thorax. 2018;73(5):431–8.
Islam M, Ramesh N, Kolman S, Koshy S, Frank M, Salomon N, et al. Association Between CD4+, Viral Load, and Pulmonary Function in HIV. Lung. 2017; 195(5): 635–42.
Varkila MRJ, Vos AG, Barth RE, Tempelman HA, Devillé WLJ, Coutinho RA, et al. The association between HIV infection and pulmonary function in a rural African population. PLoS ONE [Internet]. 2019 [citado 17 de noviembre de 2019]; 14(1). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6333365/spirometry.pdf [Internet]. [citado 17 de noviembre de 2019]. Disponible en: https://www.canahome.org/files/spirometry.pdf
Dugdale AE, Moeri M. Normal values of forced vital capacity (FVC), forced expiratory volume (FEV 1-0), and peak flow rate (PFR) in children. Arch Dis Child [Internet]. 1968 [citado 17 de noviembre de 2019]; 43(228): 229–34. Disponible en: http://adc.bmj.com/cgi/doi/10.1136/adc.43.228.229
Gupte AN, Wong ML, Msandiwa R, Barnes GL, Golub J, Chaisson RE, et al. Factors associated with pulmonary impairment in HIV-infected South African adults. PLoS ONE [Internet]. 2017 [citado 17 de noviembre de 2019];12(9). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5597201/
Lédo AP, Rodriguez-Prieto I, Lins L, Neto MG, Brites C. Association between health-related quality of life and physical functioning in antiretroviral-naive HIV-infected patients. Open AIDS J [Internet]. 2018 [citado 17 de noviembre de 2019]; 12: 117–25. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6182873/
Drummond MB, Kirk GD. HIV-associated obstructive lung diseases: insights and implications for the clinician. Lancet Respir Med [Internet]. 2014 [citado 17 de noviembre de 2019]; 2(7): 583–92. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111094/
Drummond MB, Kunisaki KM, Huang L. Obstructive lung diseases in HIV: a clinical review and identification of key future research needs. Semin Respir Crit Care Med [Internet]. 2016 [citado 17 de noviembre de 2019]; 37(2): 277–88. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809361/
Samperiz G, Fanjul F, Valera JL, Lopez M, Rios Á, Peñaranda M, et al. Increased rate of FEV1 decline in HIV patients despite effective treatment with HAART. PLoS ONE [Internet]. 2019 [citado 17 de noviembre de 2019];14(10). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818778/
Talaminos Barroso A, Márquez Martín E, Roa Romero LM, Ortega Ruiz F. Factors Affecting Lung Function: A Review of the Literature. Arch Bronconeumol. junio de 2018; 54(6): 327–32.
Townsend EA, Miller VM, Prakash YS. Sex differences and sex steroids in lung health and disease. Endocr Rev. 2012; 33(1): 1–47.
Robertson TE, Nouraie M, Qin S, Crothers KA, Kessinger CJ, McMahon D, et al. HIV infection is an independent risk factor for decreased 6-minute walk test distance. PLoS ONE [Internet]. 2019 [citado 17 de noviembre de 2019]; 14(4). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481785/
Drummond Mb, Huang L, Diaz Pt, Kirk Gd, Kleerup Ec, Morris A, et al. Factors associated with abnormal spirometry among HIV-infected individuals. AIDS Lond Engl [Internet]. 2015 [citado 17 de noviembre de 2019]; 29(13): 1691–700. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4571285/
Besutti G, Santoro A, Scaglioni R, Neri S, Zona S, Malagoli A, et al. Significant chronic airway abnormalities in never‐smoking HIV ‐infected patients. HIV Med [Internet]. 2019 [citado 17 de noviembre de 2019]; 20(10): 657–67. Disponible en: https://onlinelibrary.wiley.com/doi/abs/10.1111/hiv.12785
Akanbi MO, Taiwo BO, Achenbach CJ, Ozoh OB, Obaseki DO, Sule H, et al. HIV associated chronic obstructive pulmonary disease in Nigeria. J AIDS Clin Res [Internet]. 2015 [citado 17 de noviembre de 2019]; 6(5). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521629/
Maximous S, Huang L, Morris A. Evaluation and diagnosis of HIV- associated lung disease. Semin Respir Crit Care Med. 2016; 37(2): 199–213.
MacDonald DM, Melzer AC, Collins G, Avihingsanon A, Crothers K, Ingraham NE, et al. Smoking and accelerated lung function decline in HIV-positive individuals: a secondary analysis of the START pulmonary substudy. J Acquir Immune Defic Syndr 2018; 79(3): e85–92.
von Döbeln GA, Nilsson M, Adell G, Johnsen G, Hatlevoll I, Tsai J, et al. Pulmonary function and cardiac stress test after multimodality treatment of esophageal cancer. Pract Radiat Oncol. 2016; 6(3): e53–9.
Alonso-Gonzalez R, Borgia F, Diller G-P, Inuzuka R, Kempny A, Martinez- Naharro A, et al. Abnormal lung function in adults with congenital heart disease: prevalence, relation to cardiac anatomy, and association with survival. Circulation. 2013; 127(8): 882–90.
LoMauro A, Aliverti A. Respiratory physiology of pregnancy. Breathe [Internet]. 2015 [citado 20 de noviembre de 2019]; 11(4): 297–301. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4818213/
Patil S, Patil R, Jadhav A. Pulmonary functions’ assessment in post- tuberculosis cases by spirometry: Obstructive pattern is predominant and needs cautious evaluation in all treated cases irrespective of symptoms. Int J Mycobacteriology. 2018; 7(2): 128–33.
Goñi-Viguria R, Yoldi-Arzoz E, Casajús-Sola L, Aquerreta-Larraya T, Fernández-Sangil P, Guzmán-Unamuno E, et al. Respiratory physiotherapy in intensive care unit: Bibliographic review. Enferm Intensiva. 2018; 29(4): 168–81.
Sadek SH, Khalifa WA, Azoz AM. Pulmonary consequences of hypothyroidism. Ann Thorac Med. 2017; 12(3): 204–8.
Kaneko H, Suzuki A. Effect of chest and abdominal wall mobility and respiratory muscle strength on forced vital capacity in older adults. Respir Physiol Neurobiol. 2017; 246: 47–52.
Kaneko H, Shiranita S, Horie J, Hayashi S. Reduced chest and abdominal wall mobility and their relationship to lung function, respiratory muscle strength, and exercise tolerance in subjects with COPD. Respir Care. 2016; 61(11): 1472–80.
Brune KA, Ferreira F, Mandke P, Chau E, Aggarwal NR, D’Alessio FR, et al. HIV impairs lung epithelial integrity and enters the epithelium to promote chronic lung inflammation. PLoS ONE [Internet]. 2016 [citado 21 de noviembre de 2019]; 11(3). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4773117/
Drummond MB, Lambert AA, Hussien AF, Lin CT, Merlo CA, Wise RA, et al. HIV infection is independently associated with increased CT scan lung density. Acad Radiol. 2017; 24(2): 137–45.
Stephenson SE, Wilson CL, Crothers K, Attia EF, Wongtrakool C, Petrache I, et al. Impact of HIV infection on α1-antitrypsin in the lung. Am J Physiol - Lung Cell Mol Physiol [Internet]. 2018 [citado 21 de noviembre de 2019]; 314(4): L583–92. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966776/
Chand HS, Vazquez-Guillamet R, Royer C, Rudolph K, Mishra N, Singh SP, et al. Cigarette smoke and HIV synergistically affect lung pathology in cynomolgus macaques. J Clin Invest [Internet]. [citado 21 de noviembre de 2019]; 128(12): 5428–33. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6264630/
Polit DF. Clinical significance in nursing research: A discussion and descriptive analysis. Int J Nurs Stud. 2017; 73: 17–23.
Jaeschke R, Singer J, Guyatt GH. Measurement of health status: Ascertaining the minimal clinically important difference. Control Clin Trials [Internet]. 1989 [citado 17 de noviembre de 2019]; 10(4): 407–15. Disponible en: http://www.sciencedirect.com/science/article/pii/0197245689900056
Heston T, Wahl R. How often are statistically significant results clinically relevant? Not often. J Nucl Med [Internet]. 2009 [citado 17 de noviembre de 2019]; 50(Supplement 2): 1370–1370. Disponible en: http://jnm.snmjournals.org/content/50/supplement_2/1370
Gagnier JJ, Morgenstern H. Misconceptions, misuses, and misinterpretations of p values and significance testing. J Bone Joint Surg Am. 2017; 99(18): 1598–603.
Solla F, Tran A, Bertoncelli D, Musoff C, Bertoncelli CM. Why a P-Value is Not Enough. Clin Spine Surg. 2018; 31(9): 385–8.
Concato J. Overview of Research Design in Epidemiology. J Law Policy [Internet]. 2004 de 2003; 12: 489. Disponible en: https://heinonline.org/HOL/Page?handle=hein.journals/jlawp12&id=501&di v=&collection=
Wasserstein RL, Schirm AL, Lazar NA. Moving to a World Beyond “p < 0.05”. Am Stat [Internet]. 2019 [citado 21 de noviembre de 2019]; 73(sup1): 1–19. Disponible en: https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1583913
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.