Bioprospection of bioflocculantproducing lactic acid bacteria isolated from residual sugar cane juice
DOI:
https://doi.org/10.18050/revucv-scientia.v12i2.912Keywords:
Bioprospection, bioflocculant, Leuconostoc mesenteroides, lactic acid bacteriaAbstract
The objective was to isolate bioflocculant-producing lactic acid bacteria (LAB) from residual sugarcane juice. For this reason, sugarcane juice samples were obtained from 15 randomly sampled residual sugarcane stalk samples. The isolation of LAB was then carried out by means of conventional microbiology techniques, using Agar Mayeux, Sandine and Elliker (MSE) culture medium at pH 7.2 and an incubation time of 30°C for 48 hours. Subsequently, pure cultures were made from the characteristic colonies of Leuconostoc mesenteroides (rubbery, viscous, translucent and creamy colonies) for their biochemical identification according to Bergey’s Manual of Bacteriological Determination. The identification and selection of L. mesenteroides subsp. mesenteroides was carried out according to the Kappa coefficient statistical method, with the purpose of using it in the production of dextran (bioflocculant) in an aerated-agitated bioreactor (Aplikon brand). The purity of the dextran was determined using the FT-IR technique, which was compared with the spectrum of pure dextran produced by the strain NRRL P-640. Four strains of Leuconostoc mesenteroides, LM (01-04) were isolated, of which the strain LM03 was identified as L. meenteroides subsp. mesenteroides. The dextran values produced by LM03 were 26.87 g/L at 80 hours (maximum concentration) and 2.61 g/L at 4 hours (minimum concentration). The dextran produced by LM03 is pure according to FT-IR analysis. In conclusion, it was possible to isolate BAL L. mesenteroides subsp. mesenteroides (strain LM03), which had the capacity to produce dextran, which can be used as a bioflocculant with different biotechnological and industrial uses.
References
Barker, P. E. (1990). The productions of the enzyme dextransucrase using nonaerate fermentation techniques. Biotechnol Bioeng, 37, 703-707. DOI: 10.1002/bit.260370803.
Behravan, J., Sedigheh, B. & Zohreh, S. (2003). Optimization production by Leuconostoc mesenteroides NRRL B-512 using cheap and local sources of carbohydrate and nitrogen. Biotecnhol Appl. Bio-chem, 38, 267-269.
Besrour-Aouam, N., Mohedano, M. L., Fhoula, I., Zarour, K., Najjari, A., Aznar, R., Prieto, A., Ouzari, H. I., & López, P. (2019). Different Modes of Regulation of the Expression of Dextransucrase in Leuconostoc lactis AV1n and Lactobacillus sakei MN1. Frontiers in microbiology, 10, 959. https://doi.org/10.3389/fmicb.2019.00959
Caro, J. V. (2013). Efecto de la concentración de inóculo y tiempo de fermentación en la producción de dextranos por Leuconostoc mesenteroides subsp. mesenteroides aislados de jugo de caña de azúcar. Revista Científica Pakamuros, 1(1), 11.
Capek, P., Hlavoňová, E., Matulová, M., Mislovicova, D., Růžička, J., Koutný, M. y Keprdová, L. (2011). Isolation and characterization of an extracellular glucan produced by Leuconostoc garlicum PR. Carbohydrate polymers, 83(1), 88-93. DOI: 10.1016/j.carbpol.2010.07.024.
Cosa, S. (2010). Assessment of bioflocculant production by some marine bacteria isolated from the bottom sediment of algoa bay, Department of Biochemistry and Microbiology, Faculty of science and agriculture, University of Fort Hare, Alice, South Africa.
Cuesta, F. (2016). Actividad biofloculante de Pseudomonas luteola, Bacillus coagulans y Bacillus amyloliquefaciens en suspensiones de Caolín (Tesis de maestría). Universidad Católica de Manizales, Colombia.
Du, R., Zhou, Z., & Han, Y. (2020). Functional Identification of the Dextransucrase Gene of Leuconostoc mesenteroides DRP105. International journal of molecular sciences, 21(18), 6596. https://doi.org/10.3390/ijms21186596
Elinalva, P. et. al. (2012). Production, extraction and characterization of exopolysaccharides produced by the native Leuconostoc mesenteroides R2 strain. Anais da Academia Brasileira de Ciências, 84(2), 495-507. http://dx.doi.org/10.1590/S0001-37652012000200018
Feng, D. L. y Xu, S. H. (2008). Characterization of bioflocculant MBF3-3 produced by an isolated Bacillus sp. World Journal of Microbiology and Biotechnology, 24(9), 1627-1632. DOI: 10.1007/s11274-008-9654-1.
Freitas, F., Alves, V. D., y Reis, M. A. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in biotechnology, 29(8), 388-398.
DOI: 10.1016/j.tibtech.2011.03.008.
Friedman, B. et al. (1969). Structure of exocellular polymers and their relationship to bacteria flocculation. J. Water Pollut. Control Fed., 98, 1328-1334.
Fuentes, A., Carreño, C. & Llanos, C. (2013). Rendimiento de exopolisacáridos emulgentes producidos por bacterias halófilas nativas en tres concentraciones de melaza de Saccharum officinarum L. “caña de azúcar”. Scientia Agropecuaria, 4, 111 – 120.
García B. (2007). Metodología de extracción in situ de coagulantes naturales para la clarificación de agua superficial. Aplicación en países en vías de desarrollo (Tesis de maestría). Universidad Politécnica de Valencia, España.
Holt, J. G., Krieg, N. R., Sneath, P. H., Staley, J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology. 9th. Baltimor: William & Wilkins.
Lopretti, M. (2002). Producción simultánea de dextrano y fructosa a partir de desechos agroindustriales en Iberoamérica. Aspectos científicos, técnicos y económicos. Cyted, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo: Buenos Aires.
Madigan, M. T., Martinko, J. M., y Parker, J. (1997). Brock biology of microorganisms (Vol. 11). Upper Saddle River, NJ: Prentice Hall.
Mora, Z. (1995). Estudio de las microfloras contaminantes durante la etapa de molienda de caña en relación con el proceso de elaboración de azúcar (Tesis de pregrado). Universidad del Valle, Colombia.
Mulet, R. C., Ledesma, J. A. y Vanegas, J. A. (2010). Aislamiento y control microbiológico de Leuconostoc mesenteroides, en un ingenio para optimizar el rendimiento de azúcar y etanol. Biotecnología en el Sector Agropecuario y Agroindustrial, 8(2), 31-40.
Orozco, C. (1999). Análisis de algunas características físicas y químicas de un biopolímero producido por Klebsiella pneumoniae en un proceso de fermentación simple (Tesis de maestría). Universidad Autónoma de Nuevo León, México.
Okaiyeto, K., Nwodo, U., Okoli, S., Mabinya, L. & Okoh, A. (2016). Implications for public health demands alternatives to inorganic and synthetic flocculants: bioflocculants as important candidates. MicrobiologyOpen, 5(2), 177–211. doi:10.1002/mbo3.334
Pan Y., Shi B. y Zhang Y. (2009). Research on Flocculation Property of Bioflocculant PG. a21 Ca. Modern applied Science, 3(6), 106-112. DOI: 10.5539/mas.v3n6p106
Pinchi, M. (2017). Influencia del tiempo de fermentación en la producción de dextranos por Leuconostoc mesenteroides en biorreactores tanque aireado y agita. (Tesis de pregrado). Universidad Nacional de Trujillo, Perú.
Rodríguez, O. y Hanssen, H. (2007). Obtención de dextrano y fructosa, utilizando residuos agroindustriales con la cepa Leuconostoc mesenteroides NRRL B512-F. Revista EIA, (7): 159-172.
Romero, M. (2014). Efecto de la temperatura y la concentración de carbohidratos sobre la producción de exopolisacáridos por Leuconostoc spp. (Tesis de acreditación). Universidad Veracruzana, México.
Salehizadeh, H y Yana, N. (2014). Recent advances in extracellular biopolymer flocculants. Biotechnology Advances, 32(8), 1506-1522. DOI: 10.1016/j.biotechadv.2014.10.004.
Sarwat, F., Ul Qader, S. A., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International journal of biological sciences, 4(6), 379–386 https://doi.org/10.7150/ijbs.4.379.
Suryani, L., Artika, I. & Susanti, H. (2011). Characterization of bioflocculant producing-bacteria isolated from tapioca waste water, HAYATI. Journal of Biosciences, 18 (4), 193-196, DOI: 10.4308/hjb.18.4.193
Shukla, R., Shukla, S., Bivolarski, V., Iliev, I., Ivanova, I. y Goyal1, A. (2011). Structural Characterization of Insoluble Dextran Produced by Leuconostoc mesenteroides NRRL B-1149 in the Presence of Maltose. Food Technol. Biotechnol, 49(3), 291–296. DOI: 10.13140/2.1.2567.7442.
Takeda, M., Koizumi, J., Matsuoka, H. y Hikuma, M. (1992). Factors affecting the activity of a Protein Bioflocculant produced by Nocardia amarae. Journal of fermentation and bioengineering, 74 (6), 408-409. https://doi.org/10.1016/0922-338X(92)90043-T.
Vatansever A. (2005). Bioflocculation of activated sludge in relation to Calcium ion concentration. Department of environmental engineering, Middle East Technical University.
Vidal, M. (2014). Produção e caracterização de um polissacarídeo bacteriano com vistas a seu potencial biotecnológico [Tesis de Maestría]. Universidad Federal de Penambuco, Recife, Brasil.
Zhao, H., Liu, H. y Zhoa, J. (2013). Characterization of abioflocculantMBF-5 by Klebsiella pneumoniae and its application in Acanthamoeba cysts removal. Bioresource Technology, 137, 226–232. DOI: 10.1016/j.biortech.2013.03.079.
Wang, L., Ma, F., Qu, Y., Sun, D., Li, A., Guo, J. y Yu, B. (2011). Characterization of a compound bioflocculant produced by mixed culture of Rhizobium radiobacter F2 and Bacillus sphaeicus F6. World Journal of Microbiology and Biotechnology, 27(11), 2559-2565. DOI: 10.1007/s11274-011-0726-2.
Wu, J. Y. y Ye, H. F. (2007). Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate. Process Biochemistry, 42(7), 1114-1123. DOI: 10.1016/j.procbio.2007.05.006.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 UCV-Scientia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
-
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.