Aplicación de modelos de aprendizaje supervisados para la prevención sobre fallos de maquinaria

Authors

DOI:

https://doi.org/10.18050.revucvhacer.v12n2a1

Keywords:

Mantenimiento predictivo, Aprendizaje automático, Aprendizaje supervisado

Abstract

This article deals with the early detection of machinery failures in Operations Management. The utility of fault detection is discussed as how machine learning, an artificial intelligence technique, can be used to analyze machine monitoring data and detect patterns and signals that indicate a possible failure in the future. The objective of the research is to validate the Machine Learning models for the prediction of failures in machinery. Some of the most common machine learning algorithms are described, such as Support Vector Machine (SVM), Random Forest, CatBoost, and XGBoost. A comparison of metrics is made in the models to review which of them can better predict the detection of a failure in machines.
Keywords: predictive maintenance, machine learning, supervised learning

References

Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge, MA: MIT Press.

Borja Robalino, R., Monleón Getino, A., & Rodellar, J. (2020). Estandarización de métricas de rendimiento para clasificadores Machine y Deep Learning. Revista Ibérica de Sistemas e Tecnologias de Informação, 30, 184-196.

Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. http://dx.doi.org/10.1023/A:1010933404324

Centro de Aprendizaje Automático y Sistemas Inteligentes (2020). Machine Learning Repository. https://archive.ics.uci.edu/ml/index.php

Chen, T. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785-794). ACM. https://doi.org/10.1145/2939672.2939785

Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. (19), 8211. MDPI AG. http://dx.doi.org/10.3390/su12198211

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc.

Huddleston, S. H., & Brown, G. G. (2018). Machine learning. In Informs Analytics Body of Knowledge (1st ed., Vol. 38). https://doi.org/10.1002/9781119505914.ch7

IBM. (2021). Support Vector Machines (SVM). IBM Developer. https://developer.ibm.com/technologies/machine-learning/tutorials/support-vector-machinessvm

López Camuñas, J. M. (2021). Predictive maintenance using deep learning (Bachelor’s thesis). Universitat de Barcelona. https://hdl.handle.net/2445/182392

Matzka, S. (2020). Explainable Artificial Intelligence for Predictive Maintenance Applications. In 2020 Third International Conference on Artificial Intelligence for Industries (AI4I) (pp. 69-74). IEEE. https://doi.org/10.1109/AI4I49448.2020.00023

Prokhorenkova, L., Gusev, G., Vorobev, A., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. https://arxiv.org/abs/1706.09516

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & - Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifiers Approach. IEEE Transactions on Industrial Informatics, 11(3), 812-820. https://ieeexplore.ieee.org/document/6879441

Published

2023-04-01

How to Cite

Pan Celestino, A. J., Guillen Bravo, K. R., & Roca Becerra, J. L. (2023). Aplicación de modelos de aprendizaje supervisados para la prevención sobre fallos de maquinaria. UCV Hacer, 12(2), 9–17. https://doi.org/10.18050.revucvhacer.v12n2a1

Issue

Section

Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.