The variables of online communities that influence the purchase of women's clothing

Authors

DOI:

https://doi.org/10.18050/RevUCVHACER.v11n2a5

Keywords:

Recomendación online, Millennials, Decisión de compra, Moda

Abstract

The search for online recommendations takes precedence over social networks, since these foster the creation of collaborative spaces, online communities, and the appearance of opinion leaders such as influencers, who influence the consumer's purchasing decision process (especially when it is women's clothing). This article presents the results of the research referred to the variables: the reciprocity of the community, the affective social distance, and the receptivity of the community in the online recommendation of women's clothing products in the social networks of Facebook and Instagram, in the women between the ages of 21 and 35 who reside in the districts of Surquillo, Barranco and San Juan de Miraflores in Metropolitan Lima. An investigation was carried out with a mixed approach, with quantitative and qualitative methodology, not probabilistic for convenience, a reliability analysis and different statistical analyzes such as Kolmogórov-Smirnov, confirmatory factor analysis and linear regression analysis. In turn, a descriptive and correlational study was used to determine the relationship between the variables and determine a predictable pattern in our segment of interest. A sample of 382 people and in-depth interviews with 4 fashion influencers/bloggers were taken. The research design is not experimental, transversal and transactional correlational - cause. It was concluded that there is a positive relationship between the reciprocity variables of the community, the affective social distance, and the receptivity of the community with the online recommendation of women's clothing products on Facebook and Instagram, in millennial women from Metropolitan Lima.
Keywords: Online recommendation, millennials, purchase decision, fashion.

References

AAPEIM (2018). Niveles Socioeconómicos 2018. http://dashboardapeim.com/Webdashpersonas4_1.aspx

Barroso , C. y Armario, E.M. (1999). Marketing relacional. Madrid: ESIC Editorial. Bluecaribu. (s.f.). El 80% de las personas investigan en Internet antes de comprar. https://www.bluecaribu.com/el-consumidor-informado-el-80-de-las-personas-investigan-en-internet-antes-de-comprar.

Chen, Y., Lu, Y., Wang, B. y Pan, Z. (2019). How do product recommendations affect impulse buying? An empirical study on WeChat social commerce. Information & Management, 56(2), 236-248. https://doi.org/10.1016/j.im.2018.09.002

Córdova, M. (2014). Estadística descriptiva e inferencial aplicaciones. (5ta edición)

CPI (2018). Market Report. de http://cpi.pe/images/upload/paginaweb/archivo/26/mr_poblacional_peru_201805.pdf

CPI (2019). Market Report. http://cpi.pe/images/upload/paginaweb/archivo/26/mr_poblacional_peru_201905.pdf

De la Garza, J.,Morales, B. N. y González, B.A.(2013). Análisis Estadístico Multivariante: Un enfoque teórico y práctico (1era edición) México: McGraw-Hill.

De Veirman, Cauberghe, y Hudders (2017). Marketing through Instagram influencers: the impact of number of followers and product divergence on brand attitude. Department of Communication Sciences. doi: https://doi.org/10.1080/02650487.2017.1348035

Deloitte. (2016). La Nueva Brecha Digital. https://www2.deloitte.com/content/dam/Deloitte/cl/Documents/consumer-business/cl-cb-nueva-brecha-digital-retail-2016.pdf .

Diana-Jens, P. y Ruibal, A. R. (2015). La reputación online y su impacto en la política de precios de los hoteles. Cuadernos de Turismo, (36), 129-155. https://doi.org/10.6018/turismo.36.230911

Escobedo, M., Hernández , J., Ortega, V. y Martínez, G (2018). Modelos de Ecuaciones Estructurales: Características, Fases, Construcción, Aplicación y Resultados. Ciencia y Trabajo, 16-22. http://dx.doi.org/10.4067/S0718-24492016000100004

Frías, D. (2019). Apuntes de consistencia interna de las puntuaciones de un instrumento de medida. España: Universidad de Valencia. https://www.uv.es/friasnav/AlfaCronbach.pdf

George, D. y Mallery, P. (2003). SPSS for Windows step by step: A simple guide and reference. 11.0 update (4thed.). Boston: Allyn & Bacon.

Grešková, P. (2016). Brand and consumer of generation Y. Marketing Identity, 4(1), 90-99. http://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=123080273&lang= es

Hernández Sampieri, R., Fernández Collado, C. y Baptista Lucio, M. (2014). Metodología de la investigación. Ciudad de México. https://www.esup.edu.pe/wp-content/uploads/2020/12/2.%20Hernandez,%20Fernandez%20y%20Baptista-Metodolog%C3%ADa%20Investigacion%20Cientifica%206ta%20ed.pdf

Hernández, R. y Mendoza, C. P. (2018). Metodología de la Investigación: Las rutas cuantitativa, cualitativa y mixta. México: Mac Graw Hill Education.

Hernández, R., Fernández, C. y Baptista, P. (2014). Metodología de la investigación. 6ta ed. México DF.

InfluencerDB (2018). State of the Industry 2018. https://cdn2.hubspot.net/hubfs/4030790/MARKETING/Resources/Education/Infographics/ InfluencerDB-State-of-the-Industry-2018.pdf.

IPSOS (2019). Generaciones en el Perú. https://www.ipsos.com/es-pe/generaciones-en-el-peru

Kalia, P., Singh, T. y Kaur, N. (2016). An empirical study of online shoppers’ search behaviour with respect to sources of information in Northern India. Productivity: A Quarterly Journal of the National Productivity Council, 56(4), 353-361. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2741135

Kotler, P. y Keller, K. L. (2012). Dirección de marketing (14a ed.). Editorial Pearson.

Lai, F. y Luo, X. (2019). Social commerce and social Media: Behaviors in the new service economy. Information & Management, 56(2) 141–142. https://doi.org/10.1016/j.im.2019.01.007

Malhotra, N. (2016). Investigación de Mercados, conceptos esenciales (1a ed.). México.

Uriel, E. y Aldás, J. (2005). Análisis Multivariante Aplicado: aplicaciones al marketing, investigación de mercados, economía, dirección de empresas y turismo. Editores: Thomson-Paraninfo. País: España. ISBN: 84-9732-372-6

Zhang, H., Wang, Z., Chen, S., & Guo, C. (2019). Product recommendation in online social networking communities: An empirical study of antecedents and a mediator. Information & Management, 56(2), 185-195. https://doi.org/10.1016/j.im.2018.05.001

Published

2022-06-03 — Updated on 2022-06-03

Versions

How to Cite

MENESES SALVATIERRA, G. Y., & SALDARRIAGA DIAZ, D. A. (2022). The variables of online communities that influence the purchase of women’s clothing. UCV Hacer, 11(2), 47–53. https://doi.org/10.18050/RevUCVHACER.v11n2a5

Issue

Section

Research Articles

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.