Evaluation of tensile strength and hardness of weld beads by Smaw and Mig-Mag processes

Authors

DOI:

https://doi.org/10.18050/RevUCVHACER.v10n2a6

Keywords:

MIG, MAG, SMAW, Tensile, Hardness, Specimen

Abstract

Welding constitutes a type of permanent joint in the assembly process in the secondary manufacturing industry such as construction for the manufacture of automobiles, aircraft, bridges, tanks, ships, pipes, among others. The objective of this research was to compare the mechanical tensile strength and hardness of welded specimens. The mechanical traction was to evaluate the resistance to breakage of the weld seams by the MIG/MAG process versus the SMAW welding process, on ASTM 36 base material. The hardness was to determine the plastic deformation of the area affected by heat during the fusion process. For this purpose, the universal testing machine was used to determine the stress-strain relationship of each process; while a hardness tester was used for hardness. In this experiment, 12 welded specimens and two non-welded control specimens were used to determine the quantitative deviation of breakage and hardness, with respect to the specimens subjected to experimental tests. To determine the supremacy in mechanical properties, the t-value statistical tool was used. The results indicated that the stress-strain relationship of the specimens showed the same stages and characteristics of elastic and plastic deformation until failure. Likewise, it was found that the MIG/MAG procedure presents higher tensile strength and hardness values than SMAW, so our zero hypothesis that stated that the SMAW process had better mechanical properties had to be rejected. It is concluded that the MIG/MAG welding process has superior mechanical properties than the SMAW process.

References

Asibeluo, I. y Emifoniye, E. (2015). Effect of Arc Welding Current on the Mechanical Properties of A36 Carbon Steel Weld Joints. SSRG-International Journal of Mechanical, 2(9), 1-9. https://www.internationaljournalssrg.org/IJME/2015/Volume2-Issue9/IJME-V2I9P113.pdf

AWS Committee on Methods of Inspection (2000). Welding Inspection Handbook, (3rd Edit.), American Welding Society Pub. 106-109. https://studylib.es/doc/8971630/aws-welding-inspection-handbook-3rd-edit

Chainarong, S., Sitthipong, S., Meengam, C., Muangjunburee, P. y Tehyo, M. (2016). A comparative study: Life extension of weld surfacing of AISI 4340 high tensile strength Low Alloy Steel. Journal of Engineering and Applied Sciences 11(7), 1644-1649. https://docsdrive.com/pdfs/medwelljournals/jeasci/2016/1644-1649.pdf

Cochran, W. y Cox, G. (1978). Diseños Experimentales. Editorial Trillas. https://bibcatalogo.uca.es/cgi-bin/koha/opac-detail.pl?biblionumber=831775

Costa, P., Reyes-Váldes, F., Saldaña-Garcés, R., González-González, D. y Delgado-Alvabera, E. (2015). Optimización de los Parámetros de Soldadura por Arco Sumergido en Acero HSLA: una Aplicación para Manufactura de Tuberías de Conducción de Hidrocarburos. Soldagem & Inspeção, 20(4), 456-466. https://www.scielo.br/j/si/a/Fm6bcnGrdHbjhh5CHWcQDcG/?format=pdf&lang=es

Das, C., Bhaduri, A., Lakshmi, S., Chakravarty, S., Kar, S. y Albert S. (2015). Influence of boron and nitrog|affected zone of modified 9Cr– 1Mo steel—Gleeble simulation study, Welding in the World. 59, 1-7. https://www.researchgate.net/publication/333901090_Influence_of_Boron_and_Nitrogen_on_the_Heat_Affected_Zone_of_Modified_9Cr-1Mo_SteelGleeble_Simulation_Study

Davis, A. (1992). The science and practice of welding, (10th edit.), Cambridge University Press. https://books.google.com.pe/books?id=qhzrz508qQsC&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Deyev, G. y Deyev, D. (2006). Surface Phenomena in Fusion Welding Processes. Taylor and Francis Group. https://www.taylorfrancis.com/books/mono/10.1201/9781420036299/surface-phenomena-fusion-welding-processes-deyev

Dorta, M., Vidal, J., Mateo, A., Fargas, G. y Camejo, F. (2011). Modelos empíricos para la predicción de la geometría del cordón en soldadura a tope de un acero inoxidable dúplex 2205. Dyna, 78(169), 206-215. https://revistas.unal.edu.co/index.php/dyna/article/view/20073/48747

Dourado, M., Soares, D., Barbosa, J., Marques, A., Meireles, J., Branco, P., Ribeiro, C. y Rei, C. (2014). A comparative study of fatigue behaviour of MAG and laser welded components using reliability analysis, Materials Science & Engineering A, 606, 31-39. https://www.sciencedirect.com/science/article/pii/S0921509314003499

Durgutlu, A., Gülenç, B. y Tülbentçi, K. (1999). The effect of welding speed on the microstructure and penetration in arc welding. Turkish Journal of Engineering and Environmental Science, 23(4), 251- 259. https://atif.sobiad.com/index.jsp?modul=makale-detay&Alan=sosyal&Id=AWQnDMOFHDbCZb_mQZ1R

García, A., Gómez, C., Rivera, O. y Miguel, J. (2009). Comportamiento del tiempo de duración, la frecuencia de los cortocircuitos y la conductividad eléctrica durante el reencendido del arco en la soldadura SMAW (AC) con electrodos E6013. Soldagem & Inspecao, 14(1), 66-73. https://www.scielo.br/j/si/a/D3xtrgd93PTrzWdt34cbbSv/?format=pdf&lang=es

Groover, M. (2010). Fundamentos de manufactura moderna, (3era ed.), McGraw -Hill Interamericana. https://dokumen.tips/documents/fundamentos-de-manufactura-moderna-4ta-edicion-mikell-p-groover.html?page=1

Ilhe, M. (2017). Strength analysis of TIG and SMAW welding. International Journal of Advance Research and Innovative Ideas in Education, IJARIIE, 3(4), 1754–1763. http://ijariie.com/AdminUploadPdf/STRENGTH_ANALYSIS_OF_TIG_AND_SMAW_WLEDING_ijariie6229.pdf

Jiluam, P. (2003). Arc Welding Control. CRC Press. Elsevier. https://www.elsevier.com/books/arc-welding-control/jiluan/978-1-85573-687-0

Kou, S. (2003). Welding Metallurgy. (2nd Edit.) Wiley Interscience. https://ia800208.us.archive.org/31/items/bzbzbzManTech/Manufacturing%20Technology/Welding%20Metallurgy%202e%20c.2003%20-%20Kou.pdf

Lippold, J. (2015). Welding Metallurgical and Weldability. John Wiley & Son. http://www.iso-iran.ir/standards/others/Welding%20Metallurgy%20and%20Weldability-Lippold.pdf

Llalor, L. (1987). Tubular cored welding wires – the state of the art. FWP journal, 27(5). 6- 32.

Martínez-Conesa, E., Estrems, M. y Miguel, V. (2010). A mathematical approach based on finite differences method for analyzing the temperature field in arc welding of stainless steel thin sheets. Revista de Metalurgia, 46(6), 511-519 https://revistademetalurgia.revistas.csic.es/index.php/revistademetalurgia/article/view/1141/1153

Mishra, R., Tiwari, V. y Rajesha, S. (2014). A study of tensile strength of MIG and TIG welded dissimilar joints of mild steel and stainless steel, International Journal in Material Science and Engineering, 3(2), 23-31. https://wireilla.com/engg/ijamse/papers/3214ijamse03.pdf

Ortiz, L. (2007). Resistencia de materiales (3ra edc.). McGraw-Hill/ Interamericana de España.

Pereira, A., Buschinelli, A. y Kejelin, N. (2015). Evaluation of burn-through in the MIG/MAG In-service welding of high strength and low thickness pipelines. Welding International. 18(3), 235-244. Soldagen & Imoeracao. file:///D:/Data_Usuario/Nueva%20carpeta/Evaluation_of_Burnthrough_in_the_MIGMAG_In-Service.pdf

Pérez-Cepeda J. y Olaya-Flórez J. (2018). Influencia del tipo de electrodo sobre la microestructura y el coeficiente de rozamiento obtenido por ensayo de deslizamiento a recubrimientos duros depositados por soldadura SMAW. Ingeniería y Desarrollo, 36(2), 327-342. http://www.scielo.org.co/pdf/inde/v36n2/2145-9371-inde-36-02-327.pdf

Talabi, S., Owolabi, O., Adebisi, J. y Yahaya, T. (2014). Effect of welding variables on mechanical properties of low carbon steel welded joint. Advances in Production Engineering & Management, 9(4), 181–186. https://www.apem-journal.org/Archives/2014/APEM9-4_181-186.pdf

Weman, K. (2012). Welding processes handbook (2° ed.). Woodhead Publishing. https://www.elsevier.com/books/welding-processes-handbook/weman/978-0-85709-510-7

Zappa, S., Martínez, J. y Svoboda, H. (2020). Efecto del calor aportado y la cantidad de capas sobre la evolución microestructural en recargues de acero inoxidable dúplex. Soldagen & Imoeracao. 25(1-3), 1-13. https://www.scielo.br/j/si/a/K7C4bkfgtbTfVLNnyt5Mn9M/?format=pdf&lang=es

Published

2021-06-30

How to Cite

Villarreal Albitres, W. F. ., Vera Pacherre, J., & Panta Carranza, D. O. (2021). Evaluation of tensile strength and hardness of weld beads by Smaw and Mig-Mag processes. UCV Hacer, 10(2), 67–80. https://doi.org/10.18050/RevUCVHACER.v10n2a6

Issue

Section

Artículos

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.