Crecimiento de Trichoderma asperellum en medio sólido utilizando como única fuente de carbono a los plaguicidas clorpirifos y cipermetrina

  • Miguel Ángel Muñoz Ríos Universidad César Vallejo
  • Walter Andres Rojas Villacorta Universidad César Vallejo
  • Ingrid Lisset Malqui Ramos Universidad Nacional de Trujillo
Palabras clave: Trichoderma asperellum, Clorpirifos, Cipermetrina

Resumen

El objetivo de esta investigación fue evaluar el crecimiento de Trichoderma asperellum en medio sólido utilizando como única fuente de carbono a los plaguicidas cipermetrina (piretroide) y clorpirifos (organofosforado). Para este propósito, se realizaron cultivos de T. asperellum sobre el medio Agar Mínimo de Sales, los cuales tenían como únicas fuentes de carbono a los plaguicidas cipermetrina (480 ppm) y clorpirifos (250 ppm). Posteriormente los cultivos fueron incubados a 25 ºC por 5 días. Finalmente se calcularon las velocidades de crecimiento. El control tuvo como única fuente de carbono a la glucosa. Los resultados muestran que T. asperellum puede crecer en ambos medios utilizando a los plaguicidas como una sola fuente de carbono y en cuanto a sus velocidades de crecimiento fueron 2.88 ± 0.05 mm/día (cipermetrina) y 2.74 ± 0.05 mm/día (clorpirifos). En conclusión, T. asperellum es capaz de utilizar a los plaguicidas cipermetrina y clorpirifos mediante procesos catabólicos y tiene el potencial de ser usado en biorremediación de plaguicidas de suelos contaminados.

Descargas

La descarga de datos todavía no está disponible.

Citas

Aislabie, J., & Lloyd-Jones, G. (1995). A review of bacterial-degradation of pesticides. Soil Research, 33(6), 925-942. doi.org/10.1071/SR9950925
Alavanja M. C. (2009). Introduction: pesticides use and exposure extensive worldwide. Reviews on environmental health, 24(4), 303–309. doi:10.1515/reveh.2009.24.4.303
Bhagobaty, R. K., Joshi, S. R., & Malik, A. (2006). Microbial degradation of organophosphorous pesticide: chlorpyrifos (mini-review). Internet J Microbiol, 4(1), 1-6 . http://ispub.com/IJMB/4/1/7764
Chen, S., Hu, Q., Hu, M., Luo, J., Weng, Q., & Lai, K. (2011). Isolation and characterization of a fungus able to degrade pyrethroids and 3-phenoxybenzaldehyde. Bioresource technology,102(17), 8110 – 8116. doi:10.1016/j.biortech.2011.06.055
Chishti, Z., Hussain, S., Arshad, K. R., Khalid, A., & Arshad, M. (2013). Microbial degradation of chlorpyrifos in liquid media and soil. Journal of environmental management, 114, 372–380. doi:10.1016/j.jenvman.2012.10.032
Chowdhury, A., Pradhan, S., Saha, M., & Sanyal,
N. (2008). Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian journal of microbiology, 48(1), 114–127. doi:10.1007/s12088-008-0011-8
Cycoń, M., & Piotrowska-Seget, Z. (2016). Pyrethroid-Degrading Microorganisms and Their Potential for the Bioremediation of Contaminated Soils: A Review. Frontiers in microbiology, , 1463. doi:10.3389/fmicb.2016.01463
Deng, W., Lin, D., Yao, K., Yuan, H., Wang, Z., Li, J., … Liu, S. (2015). Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Applied microbiology and biotechnology, 99(19), 8187 – 8198. doi:10.1007/s00253-015-6690-2
Deshmukh, R., Khardenavis, A. A., & Purohit, H. J. (2016). Diverse Metabolic Capacities of Fungi for Bioremediation. Indian journal of microbiology, 56(3), 247–264. doi:10.1007/s12088-016-0584-6. https://doi.org/10.1007/s12088-016-0584-6
Dubey, K. K., & Fulekar, M. H. (2013). Investigation of potential rhizospheric isolate for cypermethrin degradation. 3 Biotech, 3(1), 33–43. doi:10.1007/s13205-012-0067-3
Gadd, G. M. (2004). Mycotransformation of organic and inorganic substrates. Mycologist, 18(2), 60-70. https://doi.org/10.1017/S0269-915X(04)00202-2
Gajendiran, A., & Abraham, J. (2018). An overview of pyrethroid insecticides. Frontiers in Biology,13(2), 79-90. doi.org/10.1007/s11515-018-1489-z
Harms, H., Schlosser, D., & Wick, L. Y. (2011). Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nature reviews. Microbiology, 9(3), 177 – 192. doi:10.1038/nrmicro2519.
Huang, Y., Xiao, L., Li, F., Xiao, M., Lin, D., Long, X., & Wu, Z. (2018). Microbial Degradation of Pesticide Residues and an Emphasis on the Degradation of Cypermethrin and 3-phenoxy Benzoic Acid: A Review. Molecules (Basel, Switzerland), 23(9), 2313. doi:10.3390/molecules23092313
Javaid, M. K., Ashiq, M., & Tahir, M. (2016). Potential of Biological Agents in Decontamination of Agricultural Soil. Scientifica, 2016, 1598325. doi:10.1155/2016/1598325
John, E. M., & Shaike, J. M. (2015). Chlorpyrifos: pollution and remediation. Environmental chemistry letters, 13(3), 269 - 291. doi.org/10.1007/s10311-015-0513-7
Kanekar, P. P., Bhadbhade, B. J., Deshpande, N. M., & Sarnaik, S. S. (2004). Biodegradation of organophosphorus pesticides. Proceedings-Indian National Science Academy Part B, 70(1), 57-70.
Kaur, P., Sharma, A., & Parihar, L. (2015). In vitro study of mycoremediation of cypermethrincontaminated soils in different regions of Punjab. Annals of microbiology, 65(4), 1949-1959. doi.org/10.1007/s13213-015-1033-1
Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., Lopez-Chuken, U. J., & Villarreal-Chiu, J. F. (2018). Microbial degradation of organophosphate pesticides: a review. Pedosphere, 28(2), 190 - 208. doi.org/10.1016/S1002-0160(18)60017-7
Liang, W. Q., Wang, Z. Y., Li, H., Wu, P. C., Hu, J. M., Luo, N., … Liu, Y. H. (2005). Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. Journal of agricultural and food chemistry, 53(19), 7415–7420. doi:10.1021/jf051460k
Lin, Q. S., Chen, S. H., Hu, M. Y., Haq, M. U., Yang, L., & Li, H. (2011). Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. International Journal of Environmental Science & Technology, 8(1), 45-56. doi.org/10.1007/BF03326194
Maqbool, Z., Hussain, S., Imran, M., Mahmood, F., Shahzad, T., Ahmed, Z., … Muzammil, S. (2016). Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: acritical review. Environmental science and pollution research international, 23(17), 16904 – 16925. doi:10.1007/s11356-016-7003-8
Maya, K., Upadhyay, S. N., Singh, R. S., & Dubey, S. K. (2012). Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresource technology, 126, 216–223. doi:10.1016/j.biortech.2012.09.003
Mukherjee, I., & Gopal, M. (1996). Degradation of chlorpyrifos by two soil fungi Aspergillus niger and Trichoderma viride. Toxicological & Environmental Chemistry, 57(1-4), 145-151. doi.org/10.1080/02772249609358383
Omar S. A. (1998). Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation, 9(5), 327 – 336. doi:10.1023/a:1008310909262
Pankaj, Sharma, A., Gangola, S., Khati, P.,
Kumar, G., & Srivastava, A. (2016). Novel pathway of cypermethrin biodegradation in a Bacillussp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech, 6(1), 45. doi:10.1007/s13205-016-0372-3
Richins, R. D., Kaneva, I., Mulchandani, A., & Chen, W. (1997). Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nature biotechnology, 15 (10), 984 – 987. doi:10.1038/nbt1097-984
Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of hazardous materials, 140(1-2), 325–332.doi:10.1016/j.jhazmat.2006.09.035
Singh, B. K., & Walker, A. (2006). Microbial degradation of organophosphorus compounds. FEMS microbiology reviews, 30(3), 428–471. doi:10.1111/j.1574-6976.2006.00018.x
Singh, B. K., Walker, A., Morgan, J. A., & Wright, D. J. (2003). Effects of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifosdegrading bacterium. Applied and environmental microbiology, 69 (9), 5198 – 5206. doi:10.1128/aem.69.9.5198-5206.2003
Singh, B. K., Walker, A., Morgan, J. A., & Wright, D. J. (2004). Biodegradation of chlorpyrifos by enterobacter strain B-14 and its use in bioremediation of contaminated soils. Applied and environmental microbiology, 70(8), 4855–4863. doi:10.1128/AEM.70.8.4855-4863.2004
Supreeth, M., & Raju, N. S. (2017). Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Applied microbiology and biotechnology, 101 (15), 5961 – 5971. doi:10.1007/s00253-017-8401-7
Tanentzap, A. J., Lamb, A., Walker, S., & Farmer, A. (2015). Resolving Conflicts between Agriculture and the Natural Environment. PLoS biology, 13(9), e1002242. doi:10.1371/journal.pbio.1002242
Tripathi, P., Singh, P., Mishra, A., Chauhan, P., Dwivedi, S., Bais, R., & Tripathi, R. (2013). Trichoderma: a potential bioremediator for environmental clean up. Clean Technologies and Environmental Policy, 15(4), 541-550.
Zhao, H., Geng, Y., Chen, L., Tao, K., & Hou, T. (2013). Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Canadian journal of microbiology, 59(5), 311–317. doi:10.1139/cjm-2012-0580
Publicado
2020-09-16
Sección
Artículos de Investigación